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In this note, we introduce a variant of Calderón and Zygmund’s notion of Lp-differentia-
bility – an Lp-Taylor approximation. Our first result is that functions in the Sobolev space 
W 1,p(RN ) possess a first-order Lp-Taylor approximation. This is in analogy with Calderón 
and Zygmund’s result concerning the Lp -differentiability of Sobolev functions. In fact, the 
main result we announce here is that the first-order Lp-Taylor approximation characterizes 
the Sobolev space W 1,p(RN ), and therefore implies Lp-differentiability. Our approach 
establishes connections between some characterizations of Sobolev spaces due to Swanson 
using Calderón–Zygmund classes with others due to Bourgain, Brézis, and Mironescu using 
nonlocal functionals with still others of the author and Mengesha using nonlocal gradients. 
That any two characterizations of Sobolev spaces are related is not surprising; however, 
one consequence of our analysis is a simple condition for determining whether a function 
of bounded variation is in a Sobolev space.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Dans cette note, nous introduisons une variante de la notion de Calderón et Zygmund de 
différentiabilité Lp – un développement de Taylor-Lp . Notre premier résultat est que les 
fonctions de l’espace de Sobolev W 1,p(RN ) possèdent un développement de Taylor-Lp

au premier ordre. C’est un analogue du résultat de Calderón et Zygmund concernant 
la différentiabilité Lp des fonctions de Sobolev. En fait, le résultat principal que nous 
annonçons ici est que le développement de Taylor-Lp au premier ordre caractérise l’espace 
de Sobolev W 1,p(RN ), et donc implique la différentibilité Lp . Notre approche établit des 
liens entre les caractérisations des espaces de Sobolev dues à Swanson, qui utilisent les 
classes de Calderón–Zygmund, celles dues à Bourgain, Brézis et Mironescu, qui utilisent 
des fonctionnelles non locales, et celles dues à l’auteur et à Mengesha, qui utilisent des 
gradients non locaux. Que les différentes caractérisations des espaces de Sobolev soient 
reliées n’est pas surprenant ; cependant, notre analyse donne une condition simple pour 
déterminer si une fonction à variation bornée est dans un espace de Sobolev.
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1. Introduction and main results

Lp -differentiability was introduced by Calderón and Zygmund in their study of the local properties of solutions of elliptic 
differential equations [3,4]. It is a natural extension of classical differentiability in that it relaxes the requirement of the 
existence of a locally linear map in a uniform sense to its existence in an averaged sense. As the Sobolev spaces arise 
readily in the study of partial differential equations, it is not surprising that Sobolev functions possess an L p -derivative. The 
following theorem asserting this fact was proven by Calderón and Zygmund [4, Theorem 12] (for a modern reference, see 
the monograph of Evans and Gariepy [5]).

Theorem 1.1 (Calderón and Zygmund). Suppose 1 ≤ p < ∞ and f ∈ W 1,p(RN ). Then

lim
ε→0

⎛
⎜⎝ 1

εpq

 

B(0,ε)

| f (x + h) − f (x) − ∇ f (x) · h|pq dh

⎞
⎟⎠

1
pq

= 0 (1)

for LN almost every x ∈ R
N , where 1 ≤ q ≤ N

N−p if 1 ≤ p < N, 1 ≤ q < ∞ if p = N, and 1 ≤ q ≤ ∞ if p > N (when q = ∞ the left 
side of (1) is understood to be L∞

h (B(0, ε)) norm applied to the integrand).

In the language of Calderón and Zygmund, Theorem 1.1 states that f ∈ W 1,p(RN ) implies f ∈ t1,pq(x) (which is essen-
tially defined by the condition (1)) for almost every x ∈ R

N . The converse is false, readily seen through the “improved” 
Lpq-differentiability of functions in the Sobolev space W 1,p(RN ). A natural question is then whether one can characterize 
the Sobolev spaces in the spirit of condition (1). Several results have been given in this direction using the class T 1,p(x)
(for precise definitions of t1,p(x) and T 1,p(x), we refer to Ziemer [10, Chapter 3, p. 132]), also introduced by Calderón and 
Zygmund. We mention, for instance, a sort of converse to Theorem 1.1 due to Bagby and Ziemer [1], as well as some char-
acterizations due to Swanson [8,9]. As the classes of Calderón and Zygmund alone do not provide one with necessary and 
sufficient conditions for inclusion in a Sobolev space, the latter papers explore additional assumptions that enable one to 
capture the essential property that characterizes Sobolev functions (and therefore are deeply connected to our viewpoint). 
Here we will commence by examining the condition (1) from a different perspective.

Our approach begins with the observation that the key ingredients to Theorem 1.1 are the Sobolev embedding theorem 
and the Lebesgue differentiation theorem for Lp functions. As in the statement of Theorem 1.1, the latter is typically stated 
as a pointwise almost everywhere convergence result. However, a variant of the Lebesgue differentiation theorem is the 
following Lp(RN ) convergence result. If u ∈ Lp(RN ) and we define

hε(x) :=
⎛
⎜⎝  

B(x,ε)

|u(x) − u(y)|p dy

⎞
⎟⎠

1
p

,

then one has the convergence hε → 0 in Lp(RN ) as ε → 0.
From this perspective, it would be natural to expect an analogous L p -type convergence to be true for functions in the 

Sobolev space W 1,p(RN ). We therefore introduce the following definition.

Definition 1.1. A function f : RN → R is said to have a first order Lp -Taylor approximation if f ∈ Lp(RN ) and there exists a 
function v ∈ Lp(RN ; RN ) such that

lim
ε→0

ˆ

RN

 

B(0,ε)

| f (x + h) − f (x) − v(x) · h|p

|h|p
dh dx = 0. (2)

Our first result is the following theorem, which asserts that functions in the Sobolev space W 1,p(RN ) possess a first-order 
Lp-Taylor approximation.

Theorem 1.2. Let 1 ≤ p < ∞ and f ∈ W 1,p(RN ). Then f has a first order Lp-Taylor approximation, and moreover, one has the 
stronger estimate

lim
ε→0

ˆ

RN

⎛
⎜⎝  

B(0,ε)

| f (x + h) − f (x) − ∇ f (x) · h|pq

|h|pq
dh

⎞
⎟⎠

1
q

dx = 0, (3)

where 1 ≤ q ≤ N if 1 ≤ p < N, 1 ≤ q < ∞ if p = N, and 1 ≤ q ≤ ∞ if p > N.
N−p
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What is quite surprising, and one of the main results we announce here, is that this property—the existence of a Taylor 
approximation in this Lp sense—in fact characterizes Sobolev functions. Precisely, we have the following theorem character-
izing the Sobolev space W 1,p(RN ) in terms of the Lp(RN ) convergence (2).

Theorem 1.3. Let 1 ≤ p < +∞ and suppose f ∈ Lp(RN ). Then f ∈ W 1,p(RN ) if and only if f has a first order Lp-Taylor approxima-
tion.

Actually, for 1 < p < +∞, we will see in the proof that it is a consequence of the work of Bourgain, Brézis, and 
Mironescu [2], stating that the assumption of the finiteness of the limit (2) is sufficient to deduce that f ∈ W 1,p(RN ). 
Alternatively, one can follow the approach of Swanson in [8] or the author and Mengesha [7] in deducing the result. The 
unifying principle of these several works is the use of an appropriate form of integration by parts, which is done along 
an approximating sequence, and to utilize a condition of the type (2) as a uniform bound in passing the limit. Here, the 
approximations could be through standard mollification, as is the case with Swanson [8], or nonlocal functionals as was the 
approach of Bourgain, Brézis, and Mironescu [2], or nonlocal gradients, as shown by the author and Mengesha in [7].

When p = 1, we observe that Theorem 1.3 characterizes W 1,1(RN ), analogously to the paper of Swanson [9] and in 
contrast to the paper of Bourgain, Brézis, and Mironescu [2], which characterizes B V (RN ). This difference is a consequence 
of the stricter requirement of possessing a first-order L1-Taylor approximation, which, unlike L1-differentiability, generically 
does not hold for functions of bounded variation. However, one still has the following theorem concerning the finiteness of 
the integrated infinitesimal, which provides one with a characterization of the space of functions of bounded variation in a 
similar spirit to that of [2].

Theorem 1.4. Suppose f ∈ L1(RN ). Then f ∈ B V (RN ) if and only if there exists a function v ∈ L1(RN ; RN ) such that

lim sup
ε→0

ˆ

RN

⎛
⎜⎝  

B(0,ε)

| f (x + h) − f (x) − v(x) · h|q
|h|q dh

⎞
⎟⎠

1
q

dx < +∞ (4)

for any 1 ≤ q ≤ N
N−1 .

We will see in the proof of Theorem 1.3 that the assumption (2) is a simple condition that allows us to obtain the 
equi-integrability (actually, strong convergence) of the approximating sequence, allowing us to conclude that there is no 
singular portion of the measure limit that arises in the non-reflexive space L1(RN ; RN ). As a result, we have the following 
condition for determining whether a function of bounded variation is in a Sobolev space.

Corollary 1.5. Suppose f ∈ B V (RN ). Then f ∈ W 1,1(RN ) if and only if (2) holds with p = 1.

Remark 1.1. For a general f ∈ B V (RN ), the limit in Eq. (4) can be bounded above by the total mass of the singular part of 
the measure D f .

We will shortly give a proof of Theorems 1.2 and 1.3 in the case 1 ≤ p < N , while the proofs of the regime p ≥ N , 
Theorem 1.4, and Corollary 1.5 will be deferred to a later work. First, let us state without proof the following Lemma, which 
is a variation of a calculation implicit in Evans and Gariepy [5, Chapter 6, p. 231].

Lemma 1.6. Suppose f ∈ W 1,p
loc (RN ) for some 1 ≤ p < ∞, and that 1 ≤ q ≤ N

N−p if 1 ≤ p < N. Then there exists a C = C(p, q, N) > 0
such that for all 0 < t < 1

1

tN+pq

ˆ

B(0,t)

| f (x + h) − f (x) − ∇ f (x) · h|pq dh ≤ C

⎛
⎜⎝  

B(0,t)

|∇ f (x + h) − ∇ f (x)|p dh

⎞
⎟⎠

q

+ C

⎛
⎜⎝

1ˆ

0

 

B(0,st)

|∇ f (x + sz) − ∇ f (x)|p dz ds

⎞
⎟⎠

q

.

We now give a proof of Theorem 1.2.
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Proof. For any 0 < ε < 1, we expand the integrand on concentric rings 

B(0,ε)

| f (x + h) − f (x) − ∇ f (x) · h|pq

|h|pq
dh

=
∞∑

i=0

1

εN |B(0,1)|
ˆ

B(0, ε

2i )\B(0, ε

2i+1 )

| f (x + h) − f (x) − ∇ f (x) · h|pq

|h|pq
dh.

We now make estimates for i ∈ N fixed. We have

1

εN

ˆ

B(0, ε

2i )\B(0, ε

2i+1 )

| f (x + h) − f (x) − ∇ f (x) · h|pq

|h|pq
dh

≤ 1

εN

( ε

2i+1

)−pq
ˆ

B(0, ε

2i )\B(0, ε

2i+1 )

| f (x + h) − f (x) − ∇ f (x) · h|pq dh

≤ 2pq

2iN

( ε

2i

)−N−pq
ˆ

B(0, ε

2i )

| f (x + h) − f (x) − ∇ f (x) · h|pq dh.

Lemma 1.6 further implies that

( ε

2i

)−N−pq
ˆ

B(0, ε

2i )

| f (x + h) − f (x) − ∇ f (x) · h|pq dh ≤ C

⎛
⎜⎜⎝

 

B(0, ε

2i )

|∇ f (x + h) − ∇ f (x)|p dh

⎞
⎟⎟⎠

q

+ C

⎛
⎜⎜⎝

1ˆ

0

 

B(0,s ε

2i )

|∇ f (x + sz) − ∇ f (x)|p dz ds

⎞
⎟⎟⎠

q

.

Therefore, summing in i and applying the basic inequality 
(∑

i |ai |
) 1

q ≤ ∑
i |ai |

1
q (which follows from the subadditivity of 

the function t �→ t
1
q ), we have⎛

⎜⎝  

B(0,ε)

| f (x + h) − f (x) − ∇ f (x)h|pq

|h|pq
dh

⎞
⎟⎠

1
q

≤ C
∞∑

i=0

(
1

2i

)N/q  

B(0, ε

2i )

|∇ f (x + h) − ∇ f (x)|p dh

+ C
∞∑

i=0

(
1

2i

)N/q
1ˆ

0

 

B(0,s ε

2i )

|∇ f (x + sz) − ∇ f (x)|p dz ds.

Integrating the preceding inequality over x ∈ R
N and making use of Tonelli’s theorem, we obtain

ˆ

RN

⎛
⎜⎝  

B(0,ε)

| f (x + h) − f (x) − ∇ f (x)h|pq

|h|pq
dh

⎞
⎟⎠

1
q

dx

≤ C
∞∑

i=0

(
1

2i

)N/q  

B(0, ε

2i )

ˆ

RN

|∇ f (x + h) − ∇ f (x)|p dx dh

+ C
∞∑

i=0

(
1

2i

)N/q
1ˆ

0

 

B(0,s ε

2i )

ˆ

RN

|∇ f (x + sz) − ∇ f (x)|p dx dz ds.

However, if h, z ∈ B(0, ε) and s ∈ (0, 1) we have
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max

⎧⎪⎨
⎪⎩
ˆ

RN

|∇ f (x + h) − ∇ f (x)|p dx,

ˆ

RN

|∇ f (x + sz) − ∇ f (x)|p dx

⎫⎪⎬
⎪⎭ ≤ sup

w∈B(0,ε)

ˆ

RN

|∇ f (x + w) − ∇ f (x)|p dx,

and observe that this bound is independent of i ∈ N. Thus,

ˆ

RN

⎛
⎜⎝  

B(0,ε)

| f (x + h) − f (x) − ∇ f (x)h|pq

|h|pq
dh

⎞
⎟⎠

1
q

dx ≤ sup
w∈B(0,ε)

ˆ

RN

|∇ f (x + w) − ∇ f (x)|p dx

(
C

∞∑
i=0

(
1

2i

)N/q
)

.

As the infinite series is summable, the result follows from sending ε → 0 and using continuity of translation in L p(RN ). �
We conclude with a proof of Theorem 1.3.

Proof. As we have shown that f ∈ W 1,p(RN ) implies the Lp -convergence (2), it remains to show the converse. We first 
treat the case 1 < p < +∞. Let us therefore suppose that there exists a function v ∈ L p(RN ; RN ) such that (2) holds. We 
then estimateˆ

RN

 

B(0,ε)

| f (x + h) − f (x)|p

|h|p
dh dx

≤ 2p−1
ˆ

RN

 

B(0,ε)

| f (x + h) − f (x) − v(x) · h|p

|h|p
dh dx

+ 2p−1
ˆ

RN

 

B(0,ε)

∣∣∣∣v(x) · h

|h|
∣∣∣∣

p

dh dx.

Now our assumption is that the first term on the right-hand side tends to zero as ε → 0, while the second is bounded by a 
constant times the Lp norm of v . We then have that for a sequence εn → 0

lim sup
n→∞

ˆ

RN

 

B(0,εn)

| f (x + h) − f (x)|p

|h|p
dh dx < +∞,

and so by a version of the result of Bourgain, Brézis, and Mironescu [2] for RN , we conclude that f ∈ W 1,p(RN ).
For the case p = 1, a similar argument allows us to deduce that f ∈ B V (RN ) (and can be used to demonstrate one 

direction of Theorem 1.4). It therefore remains to show that v = D f in the sense of distributions and we can conclude 
f ∈ W 1,1(RN ). However, we observe that f ∈ B V (RN ) implies that the nonlocal gradient

Gε f (x) := N

 

B(0,ε)

f (x + h) − f (x)

|h|
h

|h| dh

is well defined as a Lebesgue integral and that Gε f ∈ L1(RN ; RN ) (see the paper of the author and Mengesha [7]). If we 
could show that Gε f → v in L1(RN ; RN ), we would be finished, since the convergence Gε f

∗
⇀ D f in 

(
C0(R

N ;RN )
)′

would 
then imply that v = D f in the sense of distributions, which is the desired result. However, we observe that

vi(x)N

 

B(0,ε)

hih j

|h|2 = vi(x)δi j

and therefore we have

(Gε f )i(x) − vi(x) = N

 

B(0,ε)

f (x + h) − f (x) − v(x) · h

|h|
hi

|h| dh,

and thus we can estimateˆ

RN

|(Gε f )i(x) − vi(x)| ≤ N

ˆ

RN

 

B(0,ε)

| f (x + h) − f (x) − v(x) · h|
|h| dh,

which tends to zero by our assumption and the result is demonstrated. �
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In forthcoming work we will complete the proofs of our claims, as well as discuss several applications and variations of 
the result in the context of the assumptions of Bourgain, Brézis, and Mironescu [2]. In particular, we will specifically address 
the use of different approximations of the identity, local convergence results, and the case of characterizations for domains 
� ⊂R

N open. We also will give a proof of a result related to a claim in the paper [6].
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