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In this note, we present a general way to construct spectral methods for the collision 
operator of the Boltzmann equation that preserves exactly the Maxwellian steady state 
of the system. We show that the resulting method is able to approximate with spectral 
accuracy the solution uniformly in time.
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r é s u m é

Dans cette note, nous présentons une construction générale de méthodes spectrales pour 
l’opérateur de collision de l’équation de Boltzmann permettant de préserver exactement 
les états stationnaires maxwelliens de ce type d’équations. Cette nouvelle approche est 
basée sur une décomposition de type « micro–macro » de la solution de l’équation, tout 
en restant très proche d’une méthode spectrale plus classique. Nous montrons que les 
méthodes obtenues sont capables d’approcher avec une précision spectrale, uniformément 
en temps, la solution de l’équation considérée, et nous présentons leur efficacité dans un 
test numérique.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Spectral methods for the numerical solution to the homogeneous Boltzmann equation have been proposed originally 
in [13] and [14]. Recently, their stability properties were studied in [5]. Related approaches, based on the use of the Fourier 
transform, have been introduced by [1] and [7].

In classical kinetic theory, the behavior of a rarefied gas of particles is described by the Boltzmann equation [3]:

∂ f

∂t
+ v · ∇x f = Q( f , f )
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where f (t, x, v), x ∈ R
d , v ∈ R

d (d ≥ 2), is the time-dependent particle distribution function in the phase space and the 
collision operator Q is defined by

Q( f , f )(v) =
∫

Rd

∫

Sd−1

B(cos θ, |v − v∗|)
[

f ′∗ f ′ − f∗ f
]

dω dv∗. (1)

Time and position act only as parameters in Q and therefore will be omitted in its description. In (1) we used the short-
hands f = f (v), f∗ = f (v∗), f ′ = f (v ′), f ′∗ = f (v ′∗). The velocities of the colliding pairs (v, v∗) and (v ′, v ′∗) are related 
by

v ′ = v + v∗
2

+ |v − v∗|
2

σ , v ′∗ = v + v∗

2
− |v − v∗|

2
σ .

The collision kernel B is a non-negative function that only depends on |v − v∗| and cos θ = ((v − v∗)/|v − v∗|) · ω.
In this note, we shall assume that the system considered is space homogeneous and then the particle distribution func-

tion f will only depend on time t and velocity v . The Boltzmann equation then becomes

∂ f

∂t
= Q( f , f ). (2)

Boltzmann’s collision operator has the fundamental properties of conserving mass, momentum and energy∫

v∈Rd

Q( f , f )φ(v)dv = 0, φ(v) = 1, v, |v|2

and satisfies the well-known Boltzmann’s H-theorem

− d

dt

∫

v∈Rd

f log f dv = −
∫

Rd

Q( f , f ) log( f )dv ≥ 0.

The functional − 
∫

f log f is the entropy of the solution. Boltzmann H-theorem implies that any equilibrium distribution 
function has the form of a locally Maxwellian distribution

M(ρ, u, T )(v) = ρ

(2π T )d/2
exp

(
−|u − v|2

2T

)
,

where ρ , u, T are the density, mean velocity and temperature of the gas:

ρ =
∫

Rd

f (v)dv, u = 1

ρ

∫

Rd

v f (v)dv, T = 1

dρ

∫

Rd

|u − v|2 f (v)dv.

A major drawback of the classical spectral method is the lack of exact conservations and, as a consequence, the incapacity 
of the scheme to preserve the Maxwellian steady states of the system. In this paper, we overcome this drawback thanks to 
a new reformulation of the method that permits to preserve the spectral accuracy and to capture the long-time behavior of 
the system.

2. A steady-state-preserving spectral method

Although the method applies in principle to any collisional kinetic equation that possesses a local Maxwellian-type 
equilibrium, here we describe the method in the case of the Boltzmann operator.

2.1. A micro–macro decomposition

Let us start with the decomposition

f = M + g, (3)

with M the local Maxwellian equilibrium and g such that 
∫
Rd g φ dv = 0, φ = 1, v, |v|2. When inserted into a Boltzmann-

type collision operator, the decomposition (3) gives

Q( f , f ) = L(M, g) +Q(g, g), (4)

where L(M, g) =Q(g, M) +Q(M, g) is a linear operator, and we used the fact that

Q(M, M) = 0. (5)

There are two major features in the decomposition (4):
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(1) it embeds the identity (5);
(2) the steady state of (4) is given by g = 0.

This type of micro–macro decomposition has been used, e.g., in [9,11] to develop numerical methods that preserve asymp-
totic behaviors of some kinetic models. Reviews of such methods can be found in [8,4].

To illustrate our method, let us consider now the space homogeneous equation (2) that we rewrite using the micro–
macro decomposition as⎧⎨

⎩
∂ g

∂t
= L(M, g) +Q(g, g),

f = M + g.

(6)

2.2. Derivation of the spectral method

To simplify the notations, we derived the spectral method in the classical setting introduced in [14]; similarly, it can be 
extended to the representation used in [12] for the derivation of fast algorithms. Thus, we perform the usual periodization 
in a bounded domain of the operators L and Q and denote by Lλ and Qλ the operators with cut-off on the relative velocity 
on B0(2λπ).

Let us first set up the mathematical framework of our analysis. For any t ≥ 0, f N(v, t) is a trigonometric polynomial of 
degree N in v , i.e. f N(t) ∈ P

N where

P
N = span

{
eik·v | − N ≤ k j ≤ N, j = 1, . . . ,d

}
.

Moreover, let PN : L2([−π, π ]3) → P
N be the orthogonal projection upon PN in the inner product of L2([−π, π ]3)

〈 f −PN f , φ〉 = 0, ∀ φ ∈ P
N .

We denote the L2-norm by

‖ f ‖2 = (〈 f , f 〉)1/2.

With this definition, PN f = f N , where f N is the truncated Fourier series of f given by

f N(v) =
N∑

k=−N

f̂k eik·v ,

with

f̂k = 1

(2π)d

∫

[−π,π ]d

f (v)e−ik·v dv.

We then write the Fourier–Galerkin approximation of the micro–macro equation (6):⎧⎨
⎩

∂ gN

∂t
= Lλ

N(MN , gN) + Q λ
N(gN , gN),

f N = MN + gN ,

(7)

where MN = PN M , gN = PN g , Lλ
N(MN , gN) = PNLλ(MN , gN) and Qλ

N (gN , gN ) = PNQλ(gN , gN). More precisely, using 
multi-index notations in the above expressions we have

Q λ
N(gN , gN) =

N∑
k=−N

⎛
⎜⎝

N∑
l,m=−N
l+m=k

ĝl ĝmβ̂(l,m)

⎞
⎟⎠ eik·v , k = −N, . . . , N, (8)

where the Boltzmann kernel modes β̂(l, m) = B̂(l, m) − B̂(m, m) are given by

B̂(l,m) =
∫

B0(2λπ)

∫

Sd−1

B(cos θ, |q|)e−i(l·q++m·q−) dω dq. (9)

In this last identity, q = v − v∗ is the relative velocity and q+, q− are the following parameterizations of the post-collisional 
velocities:

q+ = 1

2
(q + |q|ω) , q− = 1

2
(q − |q|ω) .

It is immediate to show that



312 F. Filbet et al. / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 309–314
Proposition 1. The function gN ≡ 0 is an admissible local equilibrium of the scheme (7) and therefore f N = MN is a local equilibrium 
state.

3. Spectral accuracy

In this section, we show that (7) is a spectrally accurate approximation to (6), provided that MN is a spectrally accurate 
approximation of M . This is clearly guaranteed if initially the support is large enough. Note that due to space homogeneity, 
M does not change in time and so does MN . It is interesting to observe that the only difference between scheme (7) and 
the usual spectral method developed on the original formulation

∂ f N

∂t
= ∂ gN

∂t
= Qλ

N( f N , f N)

= Lλ
N(MN , gN) +Qλ

N(gN , gN) +Qλ
N(MN , MN) (10)

is due to the constant (in time) term

Qλ
N(MN , MN) �= 0, (11)

which, as we will prove in the sequel, is spectrally small and is not present in (7).
If f ∈ Hr

p([−π, π ]d), where r ≥ 0 is an integer and Hr
p([−π, π ]d) is the subspace of the Sobolev space Hr([−π, π ]d), 

which consists of periodic functions, we have the following estimate for the spectral accuracy of the classical spectral 
method [14].

Theorem 1. Let f ∈ Hr
p([−π, π ]d), r ≥ 0 then

‖Qλ( f , f ) −Qλ
N( f N , f N)‖2 ≤ C

Nr

(
‖ f ‖Hr

p
+ ‖Qλ( f N , f N)‖Hr

p

)
, (12)

Therefore we have the following result for (11):

Lemma 1. Let MN =PN M where M is a local Maxwellian. Then

‖Qλ
N(MN , MN)‖2 ≤ C

Nr

(
‖M‖Hr

p
+ ‖Qλ(MN , MN)‖Hr

p

)
, (13)

Merging the two results we obtain the spectral accuracy of the new steady-state formulation

Theorem 2. Let f ∈ Hr
p([−π, π ]3), r ≥ 0 then

‖Qλ( f , f ) −Lλ
N(MN , gN) − Q λ

N(gN , gN)‖2 ≤ C

Nr

(
‖ f ‖Hr

p
+ ‖M‖Hr

p
+ ‖Qλ( f N , f N)‖Hr

p
+ ‖Qλ(MN , MN)‖Hr

p

)
.

(14)

4. A numerical example

We present in this section a numerical example of our method for the space homogeneous Boltzmann equation in 
dimension 2, with Maxwell molecules:

B(cos θ, |v − v∗|) = 1

2π
.

We compare the classical spectral method to the new steady-state preserving one. For this, we use an exact solution to the 
homogeneous Boltzmann equation, the so called Bobylev–Krook–Wu solution [2,10]. It is given by

fBKW(t, v) = exp(−v2/2S)

2π S2

[
2 S − 1 + 1 − S

2 S
v2

]

with S = S(t) = 1 − exp(−t/8)/2.
For the resolution of the Boltzmann equation (2), we use the fast spectral method of [6], with N = 32 half-modes in 

each direction of the box [−V , V ]2 for V = 8. We take M = 8 angular discretizations. Here, we insist on the fact that both 
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Fig. 1. (Color online.) Comparison of the classical spectral method with the steady-state preserving one: Relative entropy H( f |M)(t) (left) and L2 error 
‖ f (t) − fBKW(t)‖2 (right).

Fig. 2. (Color online.) Comparison of the classical spectral method with the steady-state-preserving one: Evolution of the temperature.

the classical and steady-state-preserving methods rely on the same numerical algorithm. The only difference between the 
two is the presence of the constant-over-time term (11). In particular, both methods have the same computational cost, 
namely O (MN log2 N).

Fig. 1 presents a comparison between both methods for the relative entropy of the solution f with respect to the global 
Maxwellian M

H( f |M)(t) :=
∫

Rd

f (t, v) log

(
f (t, v)

M(v)

)
,

and the absolute L2 error between the numerical solution f (t, v) and the exact one fBKW(t, v). We observe that for both 
quantities, the behavior of the steady-state-preserving method is better than the classical one. In particular, the new method 
achieves a nice monotonous decay of the relative entropy, without the large time increase of the classical spectral method. 
This can be explained thanks to the fact that the equilibria of the classical spectral method are constants over the compu-
tational domain [5]. The behavior of the L2 error is also monotonous for the steady-state preserving method, which is not 
the case for the classical one.

We then present in Fig. 2 a comparison between the temperatures of the solutions obtained with the classical and steady-
state-preserving methods. As expected with such a few Fourier mode, the temperature of the classical spectral method is 
not preserved, but grows almost linearly because of the convergence toward the discrete equilibrium, a constant on the 
cube. In contrast, it seems that the steady-state-preserving spectral methods improve greatly this behavior: although not 
perfectly conserved, the temperature of the solution decays by roughly 0.1% and then stabilizes at a constant value.

Finally, as a last observation, we noticed that even if the positivity of the solution is not preserved by the new method, 
the number of nonpositive cells seems to be lower at a fixed time for the steady-state-preserving method, compared to the 
classical one. We recall that it was already proved in [5] that the number of nonpositive cells is asymptotically 0 for the 
classical spectral method (Theorem 3).

Theorem 3. (See Filbet, Mouhot [5].) Let f N be the unique, global solution to the truncated, Fourier transformed Boltzmann equation, 
associated with a nonnegative initial datum f0 ∈ Hk

p([−π, π ]d) with k > d/2. Then the mass of the negative values of f N can be made 
uniformly in time small as the number of Fourier modes N → ∞.
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