Algebraic geometry

Diagonal property of the symmetric product of a smooth curve ${ }^{2 / 2}$

Propriété de la diagonale pour les produits symétriques d'une courbe lisse

Indranil Biswas ${ }^{\text {a }}$, Sanjay Kumar Singh ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
${ }^{\mathrm{b}}$ Institute of Mathematics, Polish Academy of Sciences, Warsaw, 00656, Poland

A R T I CLE I N F O

Article history:

Received 14 January 2015
Accepted 25 February 2015
Available online 11 March 2015
Presented by Claire Voisin

Abstract

Let C be an irreducible smooth projective curve defined over an algebraically closed field. We prove that the symmetric product $\operatorname{Sym}^{d}(C)$ has the diagonal property for all $d \geq 1$. For any positive integers n and r, let $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(n r)$ be the Quot scheme parameterizing all the torsion quotients of $\mathcal{O}_{C}^{\oplus n}$ of degree $n r$. We prove that $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(n r)$ has the weak-point property.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

Soit C une courbe irréductible, lisse, définie sur un corps algébriquement clos. Nous montrons que le produit symétrique $\operatorname{Sym}^{d}(C)$ a la propriété de la diagonale, pour tout $d \geq 1$. Pour tous entiers n et r, soit $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(n r)$ le schéma Quot paramétrant tous les quotients de torsion de $\mathcal{O}_{C}^{\oplus n}$ de degré $n r$. Nous montrons que $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(n r)$ a la propriété du point, faible.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In [8], Pragacz, Srinivas and Pati introduced the diagonal and (weak) point properties of a variety, which we recall.
Let X be a variety of dimension d over an algebraically closed field k. It is said to have the diagonal property if there is a vector bundle $E \longrightarrow X \times X$ of rank d, and a section $s \in H^{0}(X \times X, E)$, such that the zero scheme of s is the diagonal in $X \times X$. The variety X is said to have the weak point property if there is a vector bundle F on X of rank d, and a section $t \in H^{0}(X, F)$, such that the zero scheme of t is a (reduced) point of X. The diagonal property implies the weak-point property because the restriction of the above section s to $X \times\left\{x_{0}\right\}$ vanishes exactly on x_{0}.

These properties were extensively studied in [8] and [5]. In particular, it was shown that:

[^0]- they impose strong conditions on the variety,
- on the other hand there are many example of varieties with these properties.

Here we investigate these conditions for some varieties associated with a smooth projective curve.
Let C be an irreducible smooth projective curve over k. For any positive integer d, let $\operatorname{Sym}^{d}(C)$ be the quotient of C^{d} for the natural action of the group of permutations of $\{1, \cdots, d\}$. It is a smooth projective variety of dimension d. We prove the following (Theorem 3.1).

Theorem 1.1. The variety $\operatorname{Sym}^{d}(C)$ has the diagonal property.

Theorem 1 in [8, p. 1236] contains several examples of surfaces satisfying the diagonal property. We note that the surface $S y m^{2}(C)$ is not among them.

For positive integers n and d, let $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(d)$ be the Quot scheme parameterizing the torsion quotients of $\mathcal{O}_{C}^{\oplus n}$ of degree d. Quot schemes were constructed in [6] (see [7] for an exposition on [6]). The variety $\mathcal{Q}_{\mathcal{O}_{c}^{\oplus n}}(d)$ is smooth projective, and its dimension is $n d$. Note that $\mathcal{Q}_{\mathcal{O}_{C}}(d)=\operatorname{Sym}^{d}(C)$. These varieties $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(d)$ are extensively studied in algebraic geometry and mathematical physics (see [3,2,1,4] and references therein).

We prove the following (Theorem 2.2).
Theorem 1.2. If d is a multiple of n, then the variety $\mathcal{Q}_{\mathcal{O}_{C}^{\oplus n}}(d)$ has the weak-point property.

2. Quot scheme and the weak-point property

We continue with the notation of the introduction.
For a locally free coherent sheaf E of rank n on C, let $\mathcal{Q}_{E}(d)$ be the Quot scheme parameterizing all torsion quotients of E of degree d. Equivalently, $\mathcal{Q}_{E}(d)$ parametrizes all coherent subsheaves of E of rank n and degree degree $(E)-d$. Note that any coherent subsheaf of E is locally free because any torsion-free coherent sheaf on a smooth curve is locally free. This $\mathcal{Q}_{E}(d)$ is an irreducible smooth projective variety of dimension $n d$.

There is a natural morphism

$$
\varphi^{\prime}: \mathcal{Q}_{E}(d) \longrightarrow \mathcal{Q}_{\wedge^{n} E}(d)
$$

that sends any subsheaf $S \subset E$ of rank n and degree degree $(E)-d$ to the subsheaf $\bigwedge^{n} S \subset \bigwedge^{n} E$. Next note that $\mathcal{Q}_{\wedge^{n} E}(d)$ is identified with the symmetric product $\operatorname{Sym}^{d}(C)$ by sending any subsheaf $S^{\prime} \subset \bigwedge^{n} E$ to the scheme theoretic support of the quotient sheaf $\left(\bigwedge^{n} E\right) / S^{\prime}$. Let

$$
\begin{equation*}
\varphi: \mathcal{Q}_{E}(d) \longrightarrow \operatorname{Sym}^{d}(C) \tag{2.1}
\end{equation*}
$$

be the composition of φ^{\prime} with this identification of $\mathcal{Q}_{\wedge^{n} E}(d)$ with $\operatorname{Sym}^{d}(C)$. It should be mentioned that for a subsheaf $S \subset E$ of rank n and degree $(E)-d$, the image $\varphi(S) \in \operatorname{Sym}^{d}(C)$ does not, in general, coincide with the scheme theoretic support of the quotient sheaf E / S.

The symmetric product $\operatorname{Sym}^{d}(C)$ is the moduli space of effective divisors of degree d on C. Let

$$
\begin{equation*}
D \subset Y:=C \times \operatorname{Sym}^{d}(C) \tag{2.2}
\end{equation*}
$$

be the universal divisor. So the fiber of D over a point $a \in \operatorname{Sym}^{d}(C)$ is the zero dimensional subscheme of C of length d defined by a. Let

$$
\begin{equation*}
\mathcal{D}=\left(\operatorname{Id}_{C} \times \varphi\right)^{-1}(D) \subset C \times \mathcal{Q}_{E}(d) \tag{2.3}
\end{equation*}
$$

be the inverse image of D, where φ is constructed in (2.1).

Remark 2.1. Let L be a line bundle on C. For E as above, if $S \subset E$ is a subsheaf of rank n and degree degree $(E)-d$, then

$S \otimes L \subset E \otimes L$

is a subsheaf of rank n and degree degree $(E \otimes L)-d$. Therefore, we get an isomorphism

$$
\mathcal{Q}_{E}(d) \xrightarrow{\sim} \mathcal{Q}_{E \otimes L}(d)
$$

by sending any subsheaf $S \subset E$ to the subsheaf $S \otimes L \subset E \otimes L$.

Theorem 2.2. For positive integers d, n such that d is a multiple of n, the $Q u o t$ scheme $\mathcal{Q}_{\mathcal{O}_{c}^{n}}(d)$ satisfies the weak-point property.

Proof. Let $r \in \mathbb{N}$ be such that $d=r n$. Fix a closed point x_{0} in C. The line bundle $\mathcal{O}_{C}\left(r x_{0}\right)$ on C will be denoted by L. By Remark 2.1 it is enough to prove the weak-point property for $\mathcal{Q}_{L^{\oplus n}}(d)$.

Let $\mathcal{D} \hookrightarrow C \times \mathcal{Q}_{L^{\oplus n}}(d)$ be the divisor constructed in (2.3). Let

$$
\begin{equation*}
p: \mathcal{D} \longrightarrow C \text { and } q: \mathcal{D} \longrightarrow \mathcal{Q}_{L^{\oplus n}}(d) \tag{2.4}
\end{equation*}
$$

be the natural projections. Taking the direct sum of copies of the natural inclusion

$$
\iota: \mathcal{O}_{C} \hookrightarrow \mathcal{O}_{C}\left(r x_{0}\right)
$$

we get a short exact sequence of sheaves on C

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{C}^{\oplus n} \xrightarrow{\oplus^{\oplus n}} \mathcal{O}_{C}\left(r x_{0}\right)^{\oplus n} \longrightarrow T \longrightarrow 0 \tag{2.5}
\end{equation*}
$$

where T is a torsion sheaf on C of degree $n r=d$. Therefore, this quotient T is represented by a point of $\mathcal{Q}_{L^{\oplus n}}(d)$. Let

$$
\begin{equation*}
t_{0} \in \mathcal{Q}_{L^{\oplus n}}(d) \tag{2.6}
\end{equation*}
$$

be the point representing T.
The direct image

$$
F:=q_{*} p^{*} L^{\oplus n} \longrightarrow \mathcal{Q}_{L^{\oplus n}}(d)
$$

is a vector bundle of rank $n d$, where p and q are the projections in (2.4). We will construct a section of F. The section of \mathcal{O}_{C} given by the constant function 1 will be denoted by s_{0}. Consider the section

$$
s:=\iota^{\oplus n}\left(s_{0}^{\oplus n}\right) \in H^{0}\left(C, L^{\oplus n}\right),
$$

where $\iota^{\oplus n}$ is the homomorphism in (2.5). We have

$$
\begin{equation*}
\widetilde{s}:=q_{*} p^{*} s \in H^{0}\left(\mathcal{Q}_{L^{\oplus n}}(d), F\right) . \tag{2.7}
\end{equation*}
$$

For the point t_{0} in (2.6), the scheme theoretic inverse image

$$
q^{-1}\left(t_{0}\right) \subset \mathcal{D} \subset C \times \mathcal{Q}_{L^{\oplus n}}(d)
$$

is $\left(r x_{0}\right) \times t_{0}$, where q is the projection in (2.4). Since the section $\iota\left(s_{0}\right)$ of L vanishes exactly on $r x_{0}$, this implies that the section \widetilde{s} in (2.7) vanishes exactly on the reduced point t_{0}. Therefore, $\mathcal{Q}_{L} \oplus n(d)$ has the weak-point property.

3. Diagonal property for symmetric product of curves

Theorem 3.1. For any $d \geq 1$, the symmetric product $\operatorname{Sym}^{d}(C)$ of a smooth projective curve C has the diagonal property.

Proof. Consider the divisor D in (2.2). Let

$$
\begin{equation*}
L=\mathcal{O}_{Y}(D) \longrightarrow Y \tag{3.1}
\end{equation*}
$$

be the line bundle. Now consider $Z:=Y \times \operatorname{Sym}^{d}(C)=C \times \operatorname{Sym}^{d}(C) \times \operatorname{Sym}^{d}(C)$. Let

$$
\begin{equation*}
\alpha: Z \longrightarrow C, \beta: Z \longrightarrow \operatorname{Sym}^{d}(C) \text { and } \gamma: Z \longrightarrow \operatorname{Sym}^{d}(C) \tag{3.2}
\end{equation*}
$$

be the projections defined by $(x, y, z) \longmapsto x,(x, y, z) \longmapsto y$ and $(x, y, z) \longmapsto z$ respectively. Let

$$
\begin{equation*}
\widetilde{D}:=(\alpha \times \gamma)^{-1}(D) \subset C \times \operatorname{Sym}^{d}(C) \times \operatorname{Sym}^{d}(C)=Z \tag{3.3}
\end{equation*}
$$

be the inverse image, where D is defined in (2.2), and $\alpha \times \gamma: Z \longrightarrow C \times \operatorname{Sym}^{d}(C)$ sends any (x, y, z) to (x, z).
Let

$$
p: \widetilde{D} \longrightarrow \operatorname{Sym}^{d}(C) \times \operatorname{Sym}^{d}(C)
$$

be the projection defined by $b \longmapsto(\beta(b), \gamma(b))$, where β and γ are defined in (3.2), and \widetilde{D} is constructed in (3.3). Consider the direct image

$$
\begin{equation*}
V:=p_{*}\left(\left.\left((\alpha \times \beta)^{*} L\right)\right|_{\tilde{D}}\right) \longrightarrow \operatorname{Sym}^{d}(C) \times \operatorname{Sym}^{d}(C), \tag{3.4}
\end{equation*}
$$

where L is the line bundle in (3.1). The natural projection

$$
D \longrightarrow \operatorname{Sym}^{d}(C), \quad(x, y) \longmapsto y
$$

where D is defined in (2.2), is a finite morphism of degree d. This implies that p is a finite morphism of degree d. Consequently, the direct image V is a vector bundle on $\operatorname{Sym}^{d}(C) \times \operatorname{Sym}^{d}(C)$ of rank d.

Consider the natural inclusion $\mathcal{O}_{Y} \hookrightarrow \mathcal{O}_{Y}(D)=L$ (see (3.1)). Let

$$
\begin{equation*}
\sigma_{0} \in H^{0}(Y, L) \tag{3.5}
\end{equation*}
$$

be the section given by the constant function 1 using this inclusion. Let

$$
\sigma:=p_{*}\left(\left.\left((\alpha \times \beta)^{*} \sigma_{0}\right)\right|_{\tilde{D}}\right) \in H^{0}\left(\operatorname{Sym}^{d}(C) \times \operatorname{Sym}^{d}(C), V\right)
$$

be the section of V (constructed in (3.4)) given by σ_{0}.
We will show that the scheme theoretic inverse image

$$
\sigma^{-1}(0) \subset \operatorname{Sym}^{d}(C) \times \operatorname{Sym}^{d}(C)
$$

is the diagonal.
Take any point $(a, b) \in \operatorname{Sym}^{d}(C) \times \operatorname{Sym}^{d}(C)$ such that $a \neq b$. Then there is a point $z \in C$ such that the multiplicity of z in a is strictly smaller than the multiplicity of z in b. We note that the scheme theoretic inverse image

$$
p^{-1}((a, b)) \subset \widetilde{D} \subset Z=C \times \operatorname{Sym}^{d}(C) \times \operatorname{Sym}^{d}(C)
$$

is $\{(a, b)\} \times \widehat{b}$, where \widehat{b} is the zero dimensional subscheme of C of length d defined by b. On the other hand, for the section σ_{0} in (3.5), the intersection $\sigma_{0}^{-1}(0) \bigcap(C \times\{a\})$ is the zero dimensional subscheme \widehat{a} of C of length d defined by a. Since the multiplicity of z in a is strictly smaller than the multiplicity of z in b, we have:

$$
\sigma_{0}\left(\left(z_{0}, b\right)\right) \neq 0
$$

Consequently, $\sigma((a, b)) \neq 0$.
Now take a point (a, a) on the diagonal of $\operatorname{Sym}^{d}(C) \times \operatorname{Sym}^{d}(C)$. We have observed above that the inverse image

$$
p^{-1}((a, a)) \subset C
$$

coincides with the intersection $\sigma_{0}^{-1}(0) \bigcap(C \times a)$. This implies that

- $\sigma((a, a))=0$, and
- $\sigma^{-1}(0)$ is the reduced diagonal.

Therefore, $\operatorname{Sym}^{d}(C)$ has the diagonal property.

References

[1] J.M. Baptista, On the L^{2}-metric of vortex moduli spaces, Nucl. Phys. B 844 (2011) 308-333.
[2] A. Bertram, G. Daskalopoulos, R. Wentworth, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc. 9 (1996) 529-571.
[3] E. Bifet, F. Ghione, M. Letizia, On the Abel-Jacobi map for divisors of higher rank on a curve, Math. Ann. 299 (1994) 641-672.
[4] I. Biswas, N.M. Romão, Moduli of vortices and Grassmann manifolds, Commun. Math. Phys. 320 (2013) 1-20.
[5] O. Debarre, The diagonal property for abelian varieties, in: Curves and Abelian Varieties, in: Contemporary Mathematics, vol. 465, American Mathematical Society, Providence, RI, USA, 2008, pp. 45-50.
[6] A. Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique, IV. Les schémas de Hilbert. IV, in: Séminaire Bourbaki, vol. 6, Société mathématique de France, Paris, 1995, pp. 249-276, Exp. No. 221.
[7] N. Nitsure, Construction of Hilbert and Quot schemes, in: Fundamental Algebraic Geometry, in: Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, USA, 2005, pp. 105-137.
[8] P. Pragacz, V. Srinivas, V. Pati, Diagonal subschemes and vector bundles, Pure Appl. Math. Q. 4 (2008) 1233-1278.

[^0]: the first named author is supported by the J.C. Bose Fellowship. The second named author is supported by IMPAN Postdoctoral Research Fellowship. E-mail addresses: indranil@math.tifr.res.in (I. Biswas), s.singh@impan.pl (S.K. Singh).
 http://dx.doi.org/10.1016/j.crma.2015.02.007
 1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

