Lie algebras/Topology

Dirac families for loop groups as matrix factorizations

Familles d'opérateurs de Dirac pour les groupes de lacets et factorisations en matrices

Daniel S. Freed ${ }^{\text {a }}$, Constantin Teleman ${ }^{\text {b }}$
${ }^{a}$ UT Austin, Mathematics Department, RLM 8.100, 2515 Speedway C1200, Austin, TX 78712, USA
b UC Berkeley, Mathematics Department, 970 Evans Hall \#3840, Berkeley, CA 94720, USA

A R T I C L E I N F O

Article history:

Received 18 January 2015
Accepted 24 February 2015
Available online 18 March 2015
Presented by Michèle Vergne

Abstract

We identify the category of integrable lowest-weight representations of the loop group LG of a compact Lie group G with the category of twisted, conjugation-equivariant curved Fredholm complexes on the group G: namely, the twisted, equivariant matrix factorizations of a super-potential built from the loop rotation action on $L G$. This lifts the isomorphism of K-groups of [3-5] to an equivalence of categories. The construction uses families of Dirac operators.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

On identifie la catégorie des représentations intégrables de plus bas poids du groupe de lacets $L G$ d'un groupe de Lie compact G avec la catégorie des complexes de Fredholm tordus, courbés et équivariants pour conjugaison sur le groupe G : plus précisément, les factorisations en matrices d'un potentiel provenant de la rotation des lacets dans $L G$. Cette construction relève l'isomorphisme de K-groupes de [3-5] en une équivalence de catégories. La construction fait appel aux familles d'opérateurs de Dirac.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and background

The group $L G$ of smooth loops in a compact Lie group G has a remarkable class of linear representations whose structure parallels the theory for compact Lie groups [10]. The defining stipulation is the existence of a circle action on the representation, with finite-dimensional eigenspaces and spectrum bounded below, intertwining with the loop rotation action on $L G$. We denote the rotation circle by \mathbb{T}_{r}; its infinitesimal generator L_{0} represents the energy in a conformal field theory.

Noteworthy is the projective nature of these representations, described (when G is semi-simple) by a level $h \in H_{G}^{3}(G ; \mathbb{Z})$ in the equivariant cohomology for the adjoint action of G on itself. The representation category $\mathfrak{R e p}{ }^{h}(L G)$ at a given level h is semi-simple, with finitely many simple isomorphism classes. Irreducibles are classified by their lowest weight (plus some supplementary data when G is not simply connected [5, Ch. IV]).

In a series of papers [3-5], the authors, jointly with Michael Hopkins, construct $K^{0} \mathfrak{R e p}{ }^{h}(L G)$ in terms of a twisted, conjugation-equivariant topological K-theory group. To wit, when G is connected, as we shall assume throughout this paper, ${ }^{1}$ we have

$$
\begin{equation*}
K^{0} \mathfrak{R e p}{ }^{h}(L G) \cong K_{G}^{\tau+\operatorname{dim} G}(G) \tag{1.1}
\end{equation*}
$$

with a twisting $\tau \in H_{G}^{3}(G ; \mathbb{Z})$ related to h, as explained below.
Remark 1.1. One loop group novelty is a braided tensor structure ${ }^{2}$ on $\mathfrak{R e p}{ }^{h}(L G)$. The structure arises from the fusion product of representations, relevant to 2-dimensional conformal field theory. The K-group in (1.1) carries a Pontryagin product, and the multiplications match in (1.1).

The map from representations to topological K-classes is implemented by the following Dirac family. Calling \mathcal{A} the space of connections on the trivial G-bundle over S^{1}, the quotient stack [$\left.G: G\right]$ under conjugation is equivalent to $[\mathcal{A}: L G]$ under the gauge action, via the holonomy map $\mathcal{A} \rightarrow G$. Denote by $\mathbf{S}^{ \pm}$the (lowest-weight) modules of spinors for the loop space $L \mathfrak{g}$ of the Lie algebra and by $\psi(A): \mathbf{S}^{ \pm} \rightarrow \mathbf{S}^{\mp}$ the action of a Clifford generator A, for $d+A d t \in \mathcal{A}$. A representation \mathbf{H} of $L G$ leads to a family of Fredholm operators over \mathcal{A},

$$
\begin{equation*}
\not D_{A}: \mathbf{H} \otimes \mathbf{S}^{+} \rightarrow \mathbf{H} \otimes \mathbf{S}^{-}, \quad \not D_{A}:=\not \emptyset_{0}+\mathrm{i} \psi(A) \tag{1.2}
\end{equation*}
$$

where \emptyset_{0} is built from a certain Dirac operator [7] on the loop group. ${ }^{3}$ The family is projectively $L G$-equivariant; dividing out by the subgroup $\Omega G \subset L G$ of based loops leads to a projective, G-equivariant Fredholm complex on G, whose K-theory class $\left[\left(\not D_{\bullet}, \mathbf{H} \otimes \mathbf{S}^{ \pm}\right)\right] \in K_{G}^{\tau+*}(G)$ is the image of \mathbf{H} in the isomorphism (1.1). When $\operatorname{dim} G$ is odd, $\mathbf{S}^{+}=\mathbf{S}^{-}$and skew-adjointness of \emptyset_{A} leads instead to a class in K^{1}. The twisting τ is the level of $\mathbf{H} \otimes \mathbf{S}$ as an $L G$-representation, with a (G-dependent) shift from the level h of \mathbf{H}.

The shifts are best explained in the world of super-categories, with $\mathbb{Z} / 2$ gradings on morphisms and objects; odd simple objects have as endomorphisms the rank one Clifford algebra Cliff(1), and in the semi-simple case, they contribute a free generator to K^{1} instead of K^{0}. Consider the τ-projective representations of $L G$ with compatible action of $C l i f f(L \mathfrak{g})$, thinking of them as modules for the (not so well-defined) crossed product $L G \ltimes \operatorname{Cliff}(L \mathfrak{g})$. They form a semi-simple super-category $\mathfrak{S R e p}^{\tau}$, and the isomorphism (1.1) becomes

$$
\begin{equation*}
K^{*} \mathfrak{S \Re e p}^{\tau}(L G \ltimes \operatorname{Cliff}(L \mathfrak{g})) \cong K_{G}^{\tau+*}(G) \tag{1.3}
\end{equation*}
$$

with the advantage of having no shift in degree or twisting. (For simply connected G, both sides live in degree $*=\operatorname{dim} \mathfrak{g}$, but both parities can be present for general G.) This isomorphism is induced by the Dirac families of (1.2): a super-representation $\mathbf{S H}^{ \pm}$of $L G \ltimes \operatorname{Cliff}(L \mathfrak{g})$ can be coupled to the Dirac operators $\not \emptyset_{A}$ without a choice of factorization as $\mathbf{H} \otimes \mathbf{S}^{ \pm}$.

2. The main result

There is a curious mismatch in (1.3): the isomorphism is induced by a functor of underlying Abelian categories, from $\mathbb{Z} / 2$-graded representations to twisted Fredholm bundles over G, but this functor is far from an equivalence. The category $\mathfrak{S} \mathfrak{R e p}{ }^{\tau}$ is semi-simple (in the graded sense discussed), but that of twisted Fredholm complexes is not so; we can even produce continua of non-isomorphic objects in any given K-class, by compact perturbation of a Fredholm family.

Here, we redress this problem by incorporating a super-potential, a celebrity in the algebraic geometry of 2-dimensional physics (the " B-model"). As explained by Orlov ${ }^{4}$ [8], this deforms the category of complexes of vector bundles into that of matrix factorizations: the 2-periodic, curved complexes with curvature equal to the super-potential W. Our W has Morse critical points, leading to a semi-simple super-category with one generator for each critical point; the generators are precisely the Dirac families of (1.2) on irreducible $L G$-representations. The artifice of introducing W is redeemed by its natural topological origin in the loop rotation \mathbb{T}_{r}-action on the stack [$\left.G: G\right]$. The \mathbb{T}_{r}-action is evident in the presentation [$\left.\mathcal{A}: L G\right]$, but it rigidifies to a $B \mathbb{Z}$-action on the stack. Furthermore, for twistings τ transgressed from $B G$, the $B \mathbb{Z}$-action lifts to the G-equivariant gerbe G^{τ} over G which underlies the K-theory twisting. The logarithm of this lift is $2 \pi \mathrm{i} W$.

Remark 2.1. The conceptual description of a super-potential as logarithm of a $B \mathbb{Z}$-action on a category of sheaves is worked out in [9]; the matrix factorization category is the Tate fixed-point category for the $B \mathbb{Z}$-action. For varieties, W is a function and $\exp (2 \pi \mathrm{i} W)$ generates a $B \mathbb{Z}$-action on sheaves; on a stack, a geometric underlying action can also be present, as in this case. With respect to [9], our W_{τ} below should be re-scaled to take integer values at all critical points; we will omit this detail in order to better connect with the formulas in $[4,5]$.

[^0]To spell this out, recall that a stack is an instance of a category, and a $B \mathbb{Z}$-action thereon is described by its generator, an automorphism of the identity functor. This is a section over the space of objects, valued in automorphisms, which is central for the groupoid multiplication. For [G:G], the relevant section is the identity map $G \rightarrow G$, from objects to morphisms. Intrinsically, $[G: G]$ is the mapping stack from $B \mathbb{Z}$ to $B G$, and the $B \mathbb{Z}$-action in question is the self-translation action of $B \mathbb{Z}$. This rigidifies the geometric \mathbb{T}_{r}-action on the homotopy equivalent spaces $L B G \sim B L G \sim \mathcal{A} / L G$.

A class $\hat{\tau} \in H^{4}(B G ; \mathbb{Z})$ transgresses to a $\tau \in H_{G}^{3}(G ; \mathbb{Z})$, with the latter having a natural \mathbb{T}_{r}-equivariant refinement. This can also be rigidified, as follows. The exponential sequence lifts $\hat{\tau}$ uniquely to $H^{3}(B G ; \mathbb{T})$, the group cohomology with smooth circle coefficients. That defines a Lie 2 -group $G^{\hat{\tau}}$, a multiplicative \mathbb{T}-gerbe over G. (Multiplicativity encodes the original $\hat{\tau}$.) The mapping stack from $B \mathbb{Z}$ to $B G^{\hat{\imath}}$ is the quotient $\left[G^{\hat{\imath}}: G^{\hat{\imath}}\right.$] under conjugation, and carries the $B \mathbb{Z}$-action from the self-translations of the latter. Because $B \mathbb{T} \hookrightarrow G^{\hat{\imath}}$ is strictly central, the self-conjugation action of $G^{\hat{\imath}}$ factors through G, and the quotient stack $\left[G^{\hat{\tau}}: G\right]$ is our $B \mathbb{Z}$-equivariant gerbe over $[G: G]$ with band \mathbb{T}. We denote this central circle by \mathbb{T}_{c}, to distinguish it from \mathbb{T}_{r}.

The $B \mathbb{Z}$-action gives an automorphism $\exp \left(2 \pi \mathrm{i} W_{\tau}\right)$ of the identity of $\left[G^{\hat{\imath}}: G\right]$, lifting the geometric one on $[G: G]$. Concretely, $\left[G^{\hat{\imath}}: G\right]$ defines a \mathbb{T}_{c}-central extension of the stabilizer of $[G: G]$, and $\exp \left(2 \pi \mathrm{i} W_{\tau}\right)$ is a trivialization of its fiber over the automorphism g at the point $g \in G$ (see Section 3 below). The logarithm W_{τ} is multi-valued and only locally well-defined; nevertheless, the category $\operatorname{MF}_{G}^{\tau}\left(G ; W_{\tau}\right)$ of twisted matrix factorizations is well-defined, and its objects are represented by τ-twisted G-equivariant Fredholm complexes over G curved by $W_{\tau}+\mathbb{Z} \cdot$ Id.

Theorem 2.2. The following defines an equivalence of categories from $\mathfrak{S R}^{\boldsymbol{R}}{ }^{\tau}$ to $\mathrm{MF}_{G}^{\tau}\left(G ;-2 W_{\tau}\right)$: a graded representation $\mathbf{S H}^{ \pm}$goes to the twisted and curved Fredholm family $\left(\not \square ., \mathbf{S H}^{ \pm}\right)$whose value at the connection $d+A d t \in \mathcal{A}$ is the τ-projective LG-equivariant curved Fredholm complex

$$
\not D_{A}=\not D_{0}+\mathrm{i} \psi(A): \mathbf{S H}^{+} \rightleftarrows \mathbf{S} \mathbf{H}^{-} .
$$

Remark 2.3.

(i) The factor (-2), stemming from our conventions [5], can be absorbed by scaling the operators.
(ii) Matrix factorizations obtained from irreducible representations are supported on single conjugacy classes, the so-called Verlinde conjugacy classes in G, for the twisting τ. These are the supports of the co-kernels of the Dirac families (1.2), [5, §12].
(iii) There is a braided tensor structure on $\mathfrak{S R e p}^{\tau}(L G \ltimes \operatorname{Cliff}(L \mathfrak{g}))$ (without \mathbb{T}_{r}-action). A corresponding structure on $\operatorname{MF}_{G}^{\tau}\left(G, W_{\tau}\right)$ should come from the Pontryagin product. We do not know how to spell out this structure, partly because the \mathbb{T}_{r}-action is already built into the construction of MF^{τ}, and the Pontryagin product is not equivariant thereunder.
(iv) The values of the automorphism $\exp \left(2 \pi \mathrm{i} W_{\tau}\right)$ at the Verlinde conjugacy classes determine the ribbon element in $\mathfrak{R e p}^{h}(L G)$; see [2] for the discussion when G is a torus.

Theorem 2.2 has a $\hat{\tau} \rightarrow \infty$ scaling limit, which is needed in the proof. In this limit, the representation category of $L G$ becomes that of G. On the topological side, noting that each $\hat{\tau}$ defines an inner product on \mathfrak{g}, we magnify a neighborhood of $1 \in G$ to fix the scale. The τ-central extensions of stabilizers near 1 have natural splittings, and W_{τ} converges to a super-potential W, a central element of the crossed product algebra $G \ltimes \operatorname{Sym}\left(\mathfrak{g}^{*}\right)$. In a basis ξ_{a} of \mathfrak{g} with dual basis ξ^{a} of \mathfrak{g}^{*}, we will find in Section 3 that

$$
\begin{equation*}
W=-\mathrm{i} \cdot \xi_{a}\left(\delta_{1}\right) \otimes \xi^{a}+\frac{1}{2} \sum_{a}\left\|\xi^{a}\right\|^{2} \tag{2.1}
\end{equation*}
$$

with $\xi_{a}\left(\delta_{1}\right)$ denoting the ξ_{a}-derivative of the delta-function at $1 \in G$. This leads to a G-equivariant matrix factorization category $\mathrm{MF}_{G}(\mathfrak{g}, W)$ on the Lie algebra.

To describe this limiting case, recall from [5, §4] the G-analogue of the Dirac family (1.2). Kostant's cubic Dirac operator [6] on G is left-invariant, and the Peter-Weyl decomposition gives an operator $\not \emptyset_{0}: \mathbf{V} \otimes \mathbf{S}^{ \pm} \rightarrow \mathbf{V} \otimes \mathbf{S}^{\mp}$ for any irreducible representation \mathbf{V} of G, coupled to the spinors $\mathbf{S}^{ \pm}$on \mathfrak{g}. As before, let us work with graded modules $\mathbf{S V}$ for the super-algebra $G \ltimes \operatorname{Cliff}(\mathfrak{g})$.

Theorem 2.4. Sending $\mathbf{S} \mathbf{V}^{ \pm}$to $\left(\not{ }_{\bullet}, \mathbf{S} \mathbf{V}^{ \pm}\right)$, the curved complex over \mathfrak{g} given by

$$
\mathfrak{g} \ni \mu \mapsto \not \emptyset_{\mu}=\not \emptyset_{0}+\mathrm{i} \psi(\mu): \mathbf{S V}^{+} \leftrightarrows \mathbf{S V}^{-}
$$

provides an equivalence of super-categories from graded $G \ltimes \operatorname{Cliff}(\mathfrak{g})$-modules $\mathbf{S V}^{ \pm}$to G-equivariant, ($-2 W$)-matrix factorizations over \mathfrak{g}.

With λ denoting the lowest weight of V and $T(\mu)$ the μ-action on $\mathbf{S V}$, we have [5, Cor. 4.8]

$$
\not D_{\mu}^{2}=-\left\|\lambda_{V}+\rho\right\|^{2}+2 \mathrm{i} \cdot T(\mu)-\|\mu\|^{2} \in(-2 W)+\mathbb{Z}
$$

3. Outline of the proof

3.1. Executive summary

The category $\operatorname{MF}_{G}^{\tau}\left(G ; W_{\tau}\right)$ sheafifies over the conjugacy classes of G. Near a $g \in G$ with centralizer Z, the stack [$\left.G: G\right]$ is modeled on a neighborhood of 0 in the adjoint quotient $[\mathfrak{z}: Z]$ of the Lie algebra \mathfrak{z}, via $\mathfrak{z} \ni \zeta \mapsto g \cdot \exp (2 \pi \zeta)$. The equivariant gerbe $\left[G^{\hat{\imath}}: G\right.$] is locally trivialized (possibly on a finite cover of Z) uniquely up to discrete choices, differing by Z-characters. We will compute W_{τ} locally in those terms in $Z \ltimes C^{\infty}(\mathfrak{z})$, recovering (2.1), up to a (g-dependent) central translation in \mathfrak{z}. We then show that MF^{τ} vanishes near singular elements g. Assuming for brevity that $\pi_{1}(G)$ is torsion-free, we are then left with the case when Z is the maximal torus $T \subset G$, where the super-potential W_{τ} turns out to have Morse critical points, located precisely at the Verlinde conjugacy classes. The local category is freely generated by the respective Atiyah-Bott-Schapiro Thom complex; the latter is quasi-isomorphic to our Dirac family for a specific irreducible representation, associated with the Verlinde class [5, §12].

3.2. Crossed module description

We will describe $G^{\hat{\imath}}$ as a Whitehead crossed module [11]. This is an exact sequence of groups

$$
\mathbb{T}_{c} \mapsto K \xrightarrow{\varphi} H \rightarrow G
$$

equipped with an action $\alpha: H \rightarrow \operatorname{Aut}(K)$ which lifts the self-conjugation of H and factors the self-conjugation of K. Call h an H-lift of $g \in G$ and C the pre-image of Z in H. Define the central extension \widetilde{Z} by means of a \mathbb{T}_{c}-central extension \widetilde{C} of C trivialized over $\varphi(K) \cap C$, as follows. ${ }^{5}$

The commutator $c \mapsto h c h^{-1} c^{-1}$ gives a crossed homomorphism $\chi: C \rightarrow \varphi(K)$ with respect to the conjugation action of C on $\varphi(K)$. The lift α lets χ pull back the central extension $K \rightarrow \varphi(K)$ to one $\widetilde{C} \rightarrow C$; further, \widetilde{C} is trivialized over $\varphi(K)$, since $\alpha(h)$ identifies the fibers of K over c and $h c h^{-1}$, when $c \in \varphi(K)$. Finally, noticing that $h h h^{-1} h^{-1}=1$ trivializes the fiber of \widetilde{C} over $c=h$ and gives our $\exp \left(2 \pi \mathrm{i} W_{\tau}\right)$ at $g \in Z$.

3.3. Local computation of W_{τ}

Following [1], take $K=\Omega^{\tau} G$, the τ-central extension of the group of smooth maps $[0,2 \pi] \rightarrow G$ sending $\{0,2 \pi\}$ to 1 , and $H=\mathscr{P}_{1} G$, the group of smooth paths starting at $1 \in G$ but free at the end. With the $\hat{\tau}$-inner product $\langle. \mid$.$\rangle , the crossed$ module action of $\gamma \in H$ on the Lie algebra $\mathbb{R} \oplus \Omega \mathfrak{g}$ of K is

$$
\begin{equation*}
\gamma \cdot(x \oplus \omega)=\left(x-\frac{\mathrm{i}}{2 \pi} \int_{0}^{2 \pi}\left\langle\gamma^{-1} \mathrm{~d} \gamma \mid \omega\right\rangle\right) \oplus \operatorname{Ad}_{\gamma}(\omega) \tag{3.1}
\end{equation*}
$$

extending the Ad-action of $\Omega^{\tau} G$ [10, Prop. 4.3.2], and exponentiating to an H-action on $K .{ }^{6}$
Lift g to $h=\exp (t \mu) \in \mathcal{P}_{1} G, \mu \in \frac{1}{2 \pi} \log g$, and assume first that Z centralizes μ. Instead of the entire group C of Section 3.2, consider the subgroup $\mathscr{P}_{1} Z$ of paths in Z. This centralizes h, trivializing \widetilde{C} over $\mathscr{P}_{1} Z$. In this 'lucky' trivialization, $W_{\tau}=0$. However, over $\Omega Z=\varphi(K) \cap \mathscr{P}_{1} Z$, the trivialization of Section 3.2 differs from the lucky one by adding the (exponentiated) character

$$
\omega \mapsto-\frac{\mathrm{i}}{2 \pi} \int_{0}^{2 \pi}\langle\mu \mid \omega\rangle \mathrm{d} t
$$

as per formula (3.1). We can trivialize \tilde{Z} locally by extending this to a character of $\mathcal{P}_{1} Z$, accomplished by exponentiating the same integral. Now, $2 \pi \mathrm{i} W_{\tau}(g)=\pi \mathrm{i}\|\mu\|^{2} \oplus 2 \pi \mu \in \mathrm{i} \mathbb{R} \oplus \mathfrak{g}$.

Even when Z does not centralize μ, W_{τ} is determined (for $\pi_{1}(G)$ torsion-free) by restriction to a maximal torus. Continuity also pins it down: the assumption on μ can be satisfied for generic g.

3.4. Vanishing of singular contributions

Take for simplicity $g=1, Z=G, W$ on \mathfrak{g} as in (2.1), plus possibly a central linear term μ. Koszul duality equates the localized category $\operatorname{MF}_{G}^{\tau}(\mathfrak{g} ; W)$ with the super-category of modules over the differential super-algebra

$$
\left(G \ltimes \operatorname{Cliff}(\mathfrak{g}),\left[\not D_{\mu}, _\right]\right), \quad \text { with } \quad \not \emptyset_{\mu}=\not \emptyset_{0}+\mathrm{i} \psi(\mu)
$$

[^1]of Theorem 2.4. Ignoring $\not \emptyset_{\mu}$, the algebra is semi-simple, with simple modules the $\mathbf{V} \otimes \mathbf{S}^{ \pm}$. Now, $\emptyset_{\mu}^{2}=-\left\|\lambda_{V}+\mu+\rho\right\|^{2}$ cannot vanish for any \mathbf{V} for non-abelian \mathfrak{z}, so $\left[\not \varnothing_{\mu}, \not \varnothing_{\mu}\right]$ provides a homotopy between 0 and the central unit $\not \emptyset_{\mu}^{2}$. This makes the super-category of graded modules quasi-equivalent to 0 .

3.5. Globalization for the torus

We describe the stack $\left[T^{\hat{\tau}}: T\right]$ and potential W_{τ} in the presentation $T=[\mathrm{t}: \Pi$] of the torus as a quotient of its Lie algebra by $\Pi \cong \pi_{1}(T)$. Lifted to t, the gerbe of stabilizers \tilde{T} is trivial with band $\mathbb{T}_{c} \times T$. The descent datum under translation by $p \in \Pi$ is the shearing automorphism of $\mathbb{T}_{c} \times T$ given by the \mathbb{T}_{c}-valued character $\exp \langle p \mid \log t\rangle, t \in T$. In the same trivialization over \mathfrak{t}, the super-potential is

$$
2 \pi \mathrm{i} W_{\tau}(\mu)=\pi \mathrm{i}\|\mu\|^{2} \oplus 2 \pi \mu \in \mathrm{i} \mathbb{R} \oplus \mathrm{t}
$$

With Λ denoting the character lattice of T, the crossed product algebra of the stack [$T^{\tau}: T$] can be identified with the functions on $\left(\coprod_{\lambda \in \Lambda} \mathfrak{t}_{\lambda}\right) / \Pi$, with the action of Π by simultaneous translation on Λ and \mathfrak{t}. On the sheet $\lambda \in \Lambda$, $W_{\tau}=$ $-\langle\lambda \mid \mu\rangle+\|\mu\|^{2} / 2$ has a single Morse critical point at $\mu=\lambda$.

It follows that the super-category $\mathrm{MF}_{T}^{\tau}\left(T ; W_{\tau}\right)$ is semi-simple, with one generator of parity $\operatorname{dim} t$ at each point in the kernel of the isogeny $T \rightarrow T^{*}$ derived from the quadratic form $\hat{\tau} \in H^{4}(B T ; \mathbb{Z})$. The kernel comprises precisely the Verlinde points in T [2], concluding the proof of our main result.

Acknowledgements

This research was partially supported by NSF-funded Focussed Research Group grants DMS-1160461 and DMS-1160328.

References

[1] J.C. Baez, D. Stevenson, A.S. Crans, U. Schreiber, From loop groups to 2-groups, Homology, Homotopy Appl. 9 (2007) 101-135.
[2] D.S. Freed, M.J. Hopkins, J. Lurie, C. Teleman, Topological field theories from compact Lie groups, in: A Celebration of the Mathematical Legacy of Raoul Bott, in: CRM Proc. Lecture Notes, vol. 50, AMS, 2010, pp. 367-403.
[3] D.S. Freed, M.J. Hopkins, C. Teleman, Twisted K-theory and loop group representations I, J. Topol. 4 (2011) 737-798
[4] D.S. Freed, M.J. Hopkins, C. Teleman, Twisted K-theory and loop group representations II, J. Amer. Math. Soc. 26 (2013) 595-644.
[5] D.S. Freed, M.J. Hopkins, C. Teleman, Twisted K-theory and loop group representations III, Ann. Math. 174 (2011) 947-1007.
[6] B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999) 447-501.
[7] G.D. Landweber, Multiplets of representations and Kostant's Dirac operator for equal rank loop groups, Duke Math. J. 110 (2001) 121-160.
[8] D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova 246 (2004), Algebr. Geom. Metody, Svyazi i Prilozh., 240-262 (Russian);
English translation in Proc. Steklov Inst. Math. 246 (2004) 227-248.
[9] A. Preygel, Thom-Sebastiani and duality for matrix factorizations, arXiv:1101.5834.
[10] A. Pressley, G.B. Segal, Loop Groups, Oxford University Press, 1986.
[11] J.H.C. Whitehead, On adding relations to homotopy groups, Ann. Math. 42 (1941) 409-428.

[^0]: 1 Twisted loop groups show up when G is disconnected [5].
 2 When G is not simply connected, there is a constraint on h.
 ${ }^{3}$ The normalized operator $(-2)^{-1 / 2} \emptyset_{0}$ is the square root G_{0} of L_{0} in the super-Virasoro algebra.
 ${ }^{4}$ Orlov discusses complex algebraic vector bundles; we found no exposition for equivariant Fredholm complexes in topology, and a discussion is planned for our follow-up paper.

[^1]: ${ }^{5}$ The trivialization will be normalized by C-conjugation, thus descending the central extension to Z.
 ${ }^{6}$ Acting on other components of ΩG requires more topological information from $\hat{\tau}$.

