

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Functional analysis KK-theory for some graph C*-algebras

KK-théorie de certaines C-algèbres de graphes*

Emmanuel Germain, Abdoulaye Sarr

Université de Caen, LMNO, BP5186, 14032 Caen cedex, France

ARTICLE INFO

Article history: Received 3 December 2014 Accepted 24 February 2015 Available online 25 March 2015

Presented by the Editorial Board

ABSTRACT

In [2], the first author had presented a method to obtain a K-equivalence between full and reduced free products of nuclear unital C^* -algebras. The object of this note is to show how it can be extended to free products with amalgamation over a finite dimensional algebra. As a consequence the K-equivalence holds for graph- C^* -algebras whose edge stabilizers are all finite dimensional.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans [2], le premier auteur avait présenté une méthode pour obtenir l'équivalence en K-théorie entre les produits libres pleins ou réduits de C*-algèbres nucléaires unifères. Nous montrons ici comment étendre ce résultat aux produits libres amalgamés au-dessus d'une algèbre de dimension finie. Ceci permet alors de démontrer le même type de résultat pour les graphes d'algèbres quand les stabilisateurs des arêtes sont de dimension finie. © 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Given two unital C^* -algebras A_1 and A_2 with a common unital sub-algebra B and conditional expectation onto it, we can construct two types of amalgamated free products over B: the full one, latter denoted as A_m , which satisfies the universal property of amalgamated free products in the category of unital C^* -algebras, and the reduced one, defined by D. Voiculescu in [6], later denoted as A_r . It is already known that in the case of C*-algebras of K-amenable groups, the canonical morphism from A_m to A_r has an inverse in $KK(A_r, A_m)$, which implies, in particular, that they have the same K-groups. It has been generalized by Fima and Freslon to amenable quantum groups in [1]. In 1994, the first author had also proved a result for any nuclear C^* -algebras and amalgamation over \mathbb{C} . This is this latter result that we expand here to amalgamation over a finite-dimensional algebra. The proof follows the line of [2]. First we must state a precise variation of the (relative) Kasparov–Voiculescu theorem to obtain a specific version of the K-nuclearity property of Skandalis [4] for the algebras A_i . Then we verify that the construction of the inverse given in [2] adapts easily to the new situation.

For the whole article, *B* denotes a finite dimensional C^* -algebra.

http://dx.doi.org/10.1016/j.crma.2015.02.012

E-mail addresses: emmanuel.germain@unicaen.fr (E. Germain), abdoulaye.sarr@unicaen.fr (A. Sarr).

¹⁶³¹⁻⁰⁷³X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

2. Relative K-nuclearity property

Definition 2.1. Let *A* be a C^* -algebra. An injective representation π of *A* into a *B*-Hilbert module E_B is strongly injective if for any minimal central projection p_i in *B*, the restriction of the representation π to $E_B p_i$ is again injective.

Theorem 2.1. Let A be a nuclear C^* -algebra with a unital copy of B. Suppose we have a strongly injective representation π of A in some B-Hilbert module E_B . Then for any completely positive map φ from A to $L(H_D)$ where H_D is a Hilbert module over a unital C^* -algebra D that contains also a unital copy of B, there exists a sequence of $V_i \in L(H_D, \ell^2(\mathbb{N}) \otimes E_B \otimes_B D)$ such that $\lim_i ||\varphi(a) - V_i^* 1 \otimes \pi(a) \otimes_B 1_D V_i|| = 0$ and $\varphi(a) - V_i^* 1 \otimes \pi(a) \otimes_B 1_D V_i \in K(H_D)$, $\forall a \in A$.

It is proved by an easy modification in the proof of Theorem 4 in [3] of the formula for the vector ξ_i (p. 146). In particular, this holds for D = A and the identity map; therefore, we have an analogue of the K-nuclearity property. Precisely, the following theorem holds.

Theorem 2.2. With the above hypothesis, there exists a unitary U of $L(\ell^2(\mathbb{N}) \otimes E_B \otimes_B A \otimes C([0, 1]) \oplus A \otimes C([0, 1]), \ell^2(\mathbb{N}) \otimes E_B \otimes_B A \otimes C([0, 1]))$ such that the cycle with A-bimodule $\ell^2(\mathbb{N}) \otimes E_B \otimes_B A \otimes C([0, 1])^2$ with left action of A as $U(1 \otimes \pi \otimes_B 1_A \otimes 1 \oplus L_A \otimes 1)U^* \oplus 1 \otimes \pi \otimes_B 1_A \otimes 1$ (where L_A is the left action of A onto itself) and the flip operator is an element of KK(A, A) that is degenerated at t = 1.

It is possible, furthermore, because B is finite dimensional, to obtain the following additional property.

Proposition 2.1. In the precedent theorem, we can modify the unitary U by a compact perturbation such that for all $b \in B$, $U(1 \otimes \pi(b) \otimes_B 1_A \otimes 1 \oplus L_A(b) \otimes 1)U^* = 1 \otimes \pi(b) \otimes_B 1_A \otimes 1$.

The proof is first reduced to the case where $B = \mathbb{C} \oplus \mathbb{C}$. It is then about two continuous paths of projections whose difference is compact and even 0 at the starting point. In that situation, there exists a continuous path of unitaries of the form Id + compact that can conjugate one path to the other.

3. Free product of K-cycles and applications

Let A_i be collection of nuclear unital C^* -algebras with a common unital sub-algebra B of finite dimension. Assume furthermore that there exists a conditional expectation of A_i over B such that the GNS representation is strongly injective. Following [2], we can show:

Theorem 3.1. The canonical map from the full amalgamated (over B) free product A_m of the A_i 's onto the reduced amalgamated free product (of Voiculescu) A_r with respect to the conditional expectations has an inverse in $KK(A_r, A_m)$.

Because of Ueda's remark [5], Theorem 3.1 has an immediate application to HNN extensions as follows.

Theorem 3.2. Let A be a nuclear unital C*-algebra with a unital finite dimensional sub-algebra B and θ an injective unital morphism from B to A. Suppose that there exists a conditional expectation E of A onto B such that the GNS representation of E is strongly injective, then the full and reduced HNN extensions associated with these data are equivalent in KK-theory.

In [1], Fima introduced the notion of graph C^* -algebras. It can be reconstructed by induction via amalgamated free products and HNN extensions. Hence, we get the following theorem.

Theorem 3.3. Suppose we have a finite graph of C^* -algebras such that the stabilizers of vertices A_v are nuclear and the stabilizers of edges B_e are finite dimensional. Assume also that the conditional expectations from A_v onto B_e if v is an edge of e all give GNS representations that are strongly injective. Then the full and reduced C^* -algebras associated with these data are equivalent in KK-theory.

References

- [1] P. Fima, A. Freslon, Graphs of quantum groups and K-amenability, Adv. Math. 260 (2014) 233-280.
- [2] E. Germain, KK-theory of reduced free-product C*-algebras, Duke Math. J. 82 (3) (1996) 703–723.
- [3] G. Kasparov, Hibert C*-modules: theorems of Stinespring and Voiculescu, J. Oper. Theory 4 (1980) 133–150.
- [4] G. Skandalis, Une notion de nucléarité en K-théorie (d'après J. Cuntz), K-Theory 1 (1988) 549–573.
- [5] Y. Ueda, HNN extensions of von Neumann algebras, J. Funct. Anal. 225 (2) (2005) 383-426.

^[6] D.V. Voiculescu, Symmetries of some reduced free product C*-algebras, LMN 1132 (1985) 556–588.