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generators for arbitrary Kac–Moody groups.
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r é s u m é

On montre que les groupes de Kac–Moody topologiques ou discrets définis sur des corps 
finis sont 2-engendrés dans de nombreux cas. On exhibe ensuite des bornes explicites sur 
le nombre minimal de générateurs pour un groupe de Kac–Moody arbitraire.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On considère des groupes de Kac–Moody sur des corps finis Fq .

Théorème 0.1. Soit G = G(q) un groupe de Kac–Moody simplement connexe de rang m correspondant à une matrice de Cartan 
généralisée indécomposable (MCGI) A, défini sur un corps fini Fq, q = pa. Soit π = {α1, . . . , αm} l’ensemble des racines simples de G
et soit � le diagramme de Dynkin de G dont les sommets sont numérotées par α1, . . . , αm. Posons que, pour tout sous-ensemble σ
de π non vide, �(σ) représente le sous-diagramme de � engendré par αi1 , . . . , αik ∈ π où σ = {αi1 , . . . , αik }. Soit d(G) le nombre 
minimal d’éléments de G nécessaires pour générer G. Alors lorsque q est suffisamment grand, on a :

(i) lorsque m = 2, d(G) ≤ 3 ;
(ii) lorsque G est affine et que m ≥ 3, d(G) = 2 ;

(iii) lorsque G est strictement hyperbolique (symétrisable) et m ≥ 3, d(G) = 2 ;
(iv) lorsque G est hyperbolique (symétrisable), d(G) = 2 pour m ≥ 5, et d(G) ≤ 3 si m = 3 ou m = 4 (d(G) = 2 dans au moins 34

des 72 cas) à part peut-être dans trois cas exceptionnels de rang 3 et pour lesquels � est de type (∞, ∞, ∞). Dans ces trois cas, 
d(G) ≤ 4 ;
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(v) supposons que π peut être découpé en k sous-ensembles mutuellement disjoints πi , 1 ≤ i ≤ k, tels que πi = {αi1 , . . . , αil(i) } avec 
αi j ∈ π , 1 ≤ j ≤ l(i) (où l(i) = |πi |) et que pour chaque i ∈ {1, . . . , k − 1}, on a �(πi) =�s(i)

j=1 �i j où �i j est un diagramme de 
Dynkin irréductible de type fini (ce qui signifie que �(πi) peut être découpé en s(i) diagrammes de Dynkin de type fini où s(i) ∈N

dépend de πi ). Alors :
(a) si �(πk) =�r

j=1 �kj où �kj est un diagramme de Dynkin irréductible de type fini, alors d(G) ≤ 2k ;
(b) si �(πk) =�r

j=1 �kj où �kj est un diagramme de Dynkin irréductible de rang 2 de type infini, alors d(G) ≤ 2k + 2, et, si q
est assez grand, d(G) ≤ 2k + 1.

Exemple 1. Si � est un arbre enraciné fini de profondeur m, d(G) ≤ 4 lorsque q ≥ √
m.

Corollaire 0.2. Soit G un groupe de Kac–Moody minimal défini sur un corps Fq, avec q = pa et p ≥ maxi �= j |aij| (où A = (aij) est la 
MCGI de G). Soit G le groupe de Kac–Moody topologique correspondant à G. Alors les conclusions du Théorème 0.1 sont vraies si on 
remplace G par G et si d(G) représente le nombre minimal de générateurs topologiques de G.

1. Introduction

It is a well-known result that every non-Abelian finite simple group can be generated by only two elements (cf. [2]). It 
is interesting to see whether this statement is true for other classes of simple groups. For example, non-affine Kac–Moody 
groups (over finite fields) are known to be simple [6]. How many generators do they require? In this article, we discuss 
the generation of Kac–Moody groups G(q) defined over finite fields Fq and show that it is often the case that they too are 
2-generated.

Kac–Moody groups over arbitrary fields were defined by J. Tits [16]. In [1], Abramenko and Muhlherr have shown that 
with some restrictions (if the groups are 2-spherical, with some mild bounds on the size of Fq ), Kac–Moody groups over Fq

are finitely presented with the number of generators depending on q and the Lie rank of G(q).1 In [4], the author has shown 
that the family of affine Kac–Moody groups over Fq (of rank at least 3) possesses bounded presentations: there exists C > 0
such that if G(q) is an affine Kac–Moody group of rank at least 3 corresponding to an indecomposable generalised Cartan 
matrix (IGCM) and q ≥ 4, then G(q) has a presentation with d(G) generators and r(G) relations satisfying d(G) + r(G) ≤ C . 
Related results for other Kac–Moody groups over finite fields were also proved in [4]. As a consequence, the number of 
generators of a 2-spherical Kac–Moody group is independent of q and depends on the type of Dynkin diagram of G(q)

rather than on the rank of G . We make use of this observation to provide bounds on the minimal number of generators 
of G(q).

Theorem 1.1. Let G = G(q) be a simply connected Kac–Moody group of rank m corresponding to an IGCM A and defined over a 
finite field Fq. Let π = {α1, . . . , αm} be the set of simple roots of G and � be the Dynkin diagram of G whose vertices are labelled by 
α1, . . . , αm. Suppose further that for any non-empty subset σ of π , �(σ) denotes the subdiagram of � spanned by αi1 , . . . , αik ∈ π
where σ = {αi1 , . . . , αik }. Let d(G) denote the minimal number of elements of G that are required to generate G. Then for q large 
enough there holds:

(i) if m = 2, then d(G) ≤ 3;
(ii) if G is affine with m ≥ 3, then d(G) = 2;

(iii) if G is (symmetrizable) strictly hyperbolic and m ≥ 3, then d(G) = 2;
(iv) if G is (symmetrizable) hyperbolic, then if m ≥ 5, then d(G) = 2, and if m = 3 or 4, then d(G) ≤ 3 (with d(G) = 2 in at least 34

out of 72 cases) with the possible exception of three rank-3 diagrams with � of type (∞, ∞, ∞). In each one of those three cases, 
d(G) ≤ 4;

(v) suppose that we may subdivide π into k mutually disjoint subsets πi , 1 ≤ i ≤ k, such that each πi = {αi1 , . . . , αil(i) } for some 
αi j ∈ π , 1 ≤ j ≤ l(i) (with l(i) = |πi |) and for each i ∈ {1, . . . , k − 1}, �(πi) = �s(i)

j=1 �i j with �i j an irreducible Dynkin 
diagram of finite type (i.e., �(πi) can be partitioned into s(i) disjoint Dynkin diagrams of finite type for some s(i) ∈N depending 
on πi ). Then
(a) if �(πk) =�s(k)

j=1 �kj with �kj an irreducible Dynkin diagram of finite type, then d(G) ≤ 2k;

(b) if �(πk) = �s(k)
j=1 �kj with �kj an irreducible Dynkin diagram of rank 2 of infinite type, then d(G) ≤ 2k + 2 (and if we 

increase q, d(G) ≤ 2k + 1).

The bound d(G) = 2 is optimal and was obtained in cases (ii), (iii) and part of (iv). Note that the bound d(G) ≤ 2m
follows from (v)(a). Below are few examples of application of (v)(a).

1 An existence of finite generating set of G(q) can be derived directly from the original presentation of G(q).
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Example 1. If the nodes of � can be partitioned into two disjoint subsets π1 and π2 such that for every two-element subset 
{αis , αit } ⊂ πi , �({αis , αit }) is of type A1 × A1 (i.e., αis and αit are not connected in �), then for q large enough, d(G) ≤ 4.

The partition corresponding to Example 1 can often be obtained, one possible obstacle being the existence of many cycles 
of length 3 in �. Example 2 is a special case of Example 1.

Example 2. If � is a finite rooted tree and has rank m, then d(G) ≤ 4 provided that q ≥ √
m.

The following example illustrates the fact that infinite subdiagrams of � can sometimes be ignored.

Example 3. If � is the diagram below, then using an appropriate partitioning of � we immediately obtain that d(G) ≤ 4. In 
fact, using methods employed in Section 2, we can easily obtain d(G) ≤ 3.

The groups discussed so far are often called the minimal Kac–Moody groups. They are discrete infinite groups. In recent 
years, there has been a significant progress in the study of topological Kac–Moody groups. Those are either completions 
of minimal Kac–Moody groups G(q), q = pa , achieved by various methods (e.g., a completion of Carbone and Garland Gcλ

obtained via methods of representation theory, a Caprace–Rémy–Ronan completion Gcrr obtained via geometric methods) 
or a topological group Gma+ explicitly constructed by Mathieu. All of these are discussed in details in a recent paper of 
Rousseau [15]. There it is further shown that provided that p is large enough, Gma+ � Gcλ � Gcrr and G(q) is dense in 
each of those topological groups. In [5], it was shown that under the same restriction on p (and modulo the centres), 
Gma+ ∼= Gcλ ∼= Gcrr. Thus one can simply talk about a topological Kac–Moody group G = G(q) that corresponds to G = G(q)

without any ambiguity. We now observe that, since for p large enough, G(q) is dense in G(q), an immediate consequence 
of Theorem 1.1 is a bound on the number of (topological) generators of G(q).

Corollary 1.2. Let G be a minimal Kac–Moody group defined over the field Fq, with q = pa and p ≥ maxi �= j |aij | (where A = (aij) is 
the IGCM of G). Let G denote the topological Kac–Moody group corresponding to G. Then Theorem 1.1 holds if we replace G by G, and 
d(G) stands for the minimal number of topological generators of G.

In a proof of our results we make an extensive use of a result of Guralnick and Kantor regarding the generation of finite 
groups of Lie type: see their Corollary to Theorem I on p. 745 of [11]. We will refer to it as Corollary 1 in [11]. We also use 
recent estimates obtained by Menezes, Quick and Roney-Dougal [14].

Finally let us remark that while the statement and the proof of our result deals with the so-called split Kac–Moody 
groups, it can be generalised to the case of almost split Kac–Moody groups as defined by Hee [12]. To do so, one needs to 
modify the proof given in Section 2 by using instead the so-called twisted Dynkin diagrams of those groups. The remaining 
ingredients of the proof coming from finite group theory then apply in the same way.

2. Outline of a proof

Let G = G(q) be a simply connected Kac–Moody group. Let A be its IGCM of size m and α1, . . . , αm its fundamental 
roots. In the next paragraph, we will assume Proposition 2.1 of [9] that defines a simply connected Kac–Moody group via 
its presentation.

The group G is generated by its root elements xα(u), α ∈ � (the set of real roots), u ∈ Fq . For each u ∈ Fq and each 
1 ≤ i ≤ m, write xi(u) = xαi (u) and x−i(u) = x−αi (u). Then for each a ∈ F∗

q and 1 ≤ i ≤ m, put ni(a) = xi(a)x−i(a−1)xi(a), ni =
ni(1), and let hi(a) = ni(a)n−1

i . For α ∈ �, Xα := 〈xα(u), u ∈ Fq〉 ∼= (Fq, +) and Mα := 〈Xα, X−α〉 ∼= A1(q). In particular, Xi :=
〈xi(u), u ∈ Fq〉 and Mi := 〈Xi, X−i〉. Moreover, G is a group with a BN-pair, (B , N) where N is generated by a subgroup T
and elements ni , 1 ≤ i ≤ m, and T = 〈hi(a), a ∈ F∗

q, 1 ≤ i ≤ m〉 ∼= Cm
q−1 is a torus of G . Remark that T normalises each Mi , 

1 ≤ i ≤ m. Also, N/T ∼= W , the Weyl group of G , and as each ni ∈ Mi projects onto a generator wi of W , we obtain the first 
basic ingredient of our proof.

Lemma 2.1. If we have generated all Mi, 1 ≤ i ≤ m, we have generated G.



698 I. Capdeboscq / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 695–699
Notice that the notations above work just as well for finite groups of Lie type that can be thought of as the special case of 
Kac–Moody groups over Fq where A is a Cartan matrix.

Lemma 2.2. Let �(q) be a finite (quasi-) simple group of Lie type that is defined over Fq and corresponding to a root system � = A2, C2
or G2 . Let α1 and α2 be the fundamental roots of � with |α1| ≤ |α2|. Then �(q) is generated by M1 and n2 .

Proof. This is achieved by an easy calculation. �
In the future, we will denote by Mij the semi-simple subgroup of G that corresponds to �({αi, α j}). We now prove our 

main result. We do it in several steps.

Proposition 2.3. Let G be an affine simply connected Kac–Moody group of rank (m + 1) ≥ 3, corresponding to an IGCM, defined over 
a field Fq with q large enough. Then d(G) = 2.

Proof. For the affine groups, we use the notations from the book of Carter [8]. In particular, we denote the fundamental 
roots of G by α0, . . . , αm . For the type ˜C ′

m , we use the description given on p. 585 of [8].
Suppose first that G is neither of type ˜Ct

m , nor of type ˜A2. Choose i so that α0 and αi are not joined by an edge in �. 
Take an element x = n0xi ∈ G with xi ∈ Mi chosen so that if p is odd, 1 �= xi ∈ Xi , while if p = 2, xi ∈ Mi of order (q + 1). 
Since (o(n0), o(xi)) = 1 and [n0, xi] = 1, we have that 1 �= (n0xi)

o(n0) = xo(n0)
i ∈ Mi and 1 �= (n0xi)

o(xi ) = no(xi)
0 ∈ M0. Now 

consider the subgroup G0 of G that corresponds to the Dynkin subdiagram �(π0) where π0 = π − {α0} = {α1, . . . , αm}. 
Notice that G0 is a finite (possibly quasi-) simple group. By Corollary 1 of [11], there exists y ∈ G0 such that G0 is generated 
by xo(n0)

i and y. Let j ∈ {1, 2, . . . , m} be such that α j and α0 are joined in � (e.g., j = 1 for ˜An , ˜F4; j = 2 for ˜Bn , etc.). 
Notice that G0 ≥ M j for every such j. Consider M0 j . We have M0 j ≥ M0 and by Lemma 2.2, M0 j = 〈M j, n

o(xi)
0 〉. Since 

〈G0, M0 j〉 ≥ 〈Mi, 0 ≤ i ≤ m〉 = G , we obtain G = 〈x, y〉.
Suppose now that G is of type ˜Ct

m with m ≥ 3. Take x = h0(u)n1xm where u2 �= ±1 and xm ∈ Mm of odd or-
der s co-prime to t := o(h0(u2)h1(−u2)). Notice that as m ≥ 3, [h0(u)n1, xm] = 1. Then x2 = h0(u)h0(u)n1n2

1x2
m =

h0(u)h0(u)h1(u−A01 )h1(−1)x2
m = h0(u2)h1(−u2)x2

m . An explicit calculation shows that x2s = h0(u2s)h1((−u2)s) induces a 
non-trivial inner-diagonal automorphism on M0. Thus by Corollary 1 of [11], there exists y0 ∈ M0 such that 〈x2s, y0〉 ≥ M0. 
On the other hand, 1 �= x2t = x2t

m ∈ Mm . Let H ≤ G corresponding to �({α2, . . . , αm}). Again by Corollary 1 of [11], there 
exists ym ∈ H such that 〈x2t

m , ym〉 = H . Take y = y0 ym . Clearly [y0, ym] = 1, [y0, H] = 1 and [ym, M0] = 1. It follows that 
〈x, y〉 ≥ 〈x2s, y0 ym〉 ≥ M0 and 〈x, y〉 ≥ 〈x2t, y0 ym〉 ≥ H . In particular, h0(u), xm ∈ 〈x, y〉, and so n1 ∈ 〈x, y〉. But by Lemma 2.2, 
〈M0, n1〉 = M01 ≥ M1, and so G = 〈x, y〉.

If G is of type ˜Ct
2, take x = h0(u0)h2(u2)n1 with o(h0(u0)) and o(h2(u2)) as large as possible and such that u2

0u−2
2 �= −1. 

Then x2 = h0(u0)h2(u2)h0(u0)
n1 h2(u2)

n1n2
1 = h0(u2

0)h2(u2
2)h1(−u2

0u2
2). Now choose y0 ∈ M0 − T of order q − 1 if q is even 

and (q −1)/|Z(M0)| if q is odd, and y2 ∈ M2 of order q +1 if q is even and (q +1)/|Z(M2)| if q is odd. A celebrated theorem 
of Dickson (cf. 6.5.1 of [10]) implies that 〈x2, yo(y j)

i 〉 ≥ Mi , {i, j} = {0, 2}. Take y = y0 y2. It follows that 〈x, y〉 contains M0
and M2; in particular, n1 ∈ 〈x, y〉. Now Lemma 2.2 implies that 〈x, y〉 ≥ 〈M0, n1〉 ≥ M1. Thus G = 〈x, y〉.

Finally let G be of type ˜A2. Take x = n0h1(u) with u3 �= ±1. Then x2 = h1(u)n0n2
0h1(u) = h1(u)h0(u−A10 )h0(−1)h1(u) =

h1(u2)h0(−u). An explicit calculation shows that x2 acts non-trivially on M12 and so by Corollary 1 of [11], there exists 
y ∈ M12 such that 〈x2, y〉 ≥ M12. In particular, Mi ≤ 〈x, y〉 for i = 1, 2, and so n0 ∈ 〈x, y〉. But by Lemma 2.2, 〈M1, n0〉 =
M01 ≥ M0. Therefore G = 〈x, y〉. �
Proposition 2.4. Let G be a simply connected Kac–Moody group of rank 2 defined over a field Fq. Then d(G) ≤ 3.

Proof. We label the simple roots by α1 and α2. Choose 1 �= x = h1(u)h2(v) ∈ T that induces non-trivial inner-diagonal 
automorphisms on both M1 and M2. Now use Corollary 1 of [11] to choose yi ∈ Mi so that 〈x, yi〉 ≥ Mi , i = 1, 2. The result 
follows immediately. �
Proposition 2.5. Let G be a simply connected strictly hyperbolic (symmetrizable) Kac–Moody group of rank at least 3. Then if q is large 
enough, d(G) = 2.

Proof. We use the list of diagrams and notations as in Table 2 of [3]. If G is of type BG3, BG ′
3, GG3 or G ′G3, choose x =

h1(u)n2h3(v) with appropriately chosen u, v ∈ F∗
q and yi ∈ Mi for i ∈ {1, 3} so that (o(y1), o(y3)) = 1 and 〈x2, yo(y j)

i 〉 ≥ Mi , 
{i, j} = {1, 3}. Let y = y1 y3. Then 〈x, y〉 contains M1, M3 and n2. Apply Lemma 2.2 to conclude that M12 = 〈M1, n2〉 ≤ 〈x, y〉. 
As M1 ≤ M12, the result follows.

If G is of type C G ′
3, C G3, G ′G ′

3, choose x = n1h3(v) with appropriately chosen v ∈ F∗
q and y ∈ M2 such that 〈x2, y〉 ≥ M23. 

Since h3(v) ∈ M23 and n1 and M2 generate M12, we have that G = 〈x, y〉.
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If G is of type AD(2)
3 , AGG3, AC (1)

2 or AG ′G ′
3, choose x = n1h2(u) and y ∈ M23 such that 〈x2, y〉 ≥ M23. Now use the fact 

that h2(u) ∈ M23 and that 〈n1, M2〉 = M12 to conclude that G = 〈x, y〉.
Finally, if G is of type AC (1)

3 , take x = n1h4(u) and y ∈ M234 such that 〈x2, y〉 ≥ M234 (such a y exists by Corollary 1 
of [11]). Since 〈n1, M4〉 = M14 while M4 ≤ M234, we conclude that 〈x, y〉 = G . �

The proof of part (iv) of Theorem 1.1 for the hyperbolic groups follows by similar tricks and calculations done for every 
single group on the list of 130 diagrams (cf. tables of Section 7 of [7]). The proof of part (v)(a) and (v)(b) of Theorem 1.1
are obvious if one uses an observation (cf. Lemma 5 of [13]) that two elements generate a product of finite simple groups 
Hm1

1 × . . . × Hmn
n (Hi � H j , i �= j) if and only if their projections into each Hmi

i generate it, and from the estimates (see 
Corollary 1.4 of [14]) on the number h in a direct product Hh (H is a finite simple group) for which it is possible to be 
generated by 2 elements.
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