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Given a closed Riemannian manifold, we prove the C0-general density theorem for 
continuous geodesic flows. More precisely, we prove that there exists a residual (in the 
C0-sense) subset of the continuous geodesic flows such that, in that residual subset, the 
geodesic flow exhibits dense closed orbits.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Étant donnée une variété riemannienne compacte sans bord, nous démontrons un 
théorème de densité C0-générique pour les flots géodésiques et, plus précisément, nous 
prouvons qu’il existe une partie C0-résiduelle de l’ensemble des flots géodésiques continus, 
telle que tout flot dans cette partie admet un ensemble dense d’orbites périodiques.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction: basic definitions and statement of the results

1.1. The geodesic flow and mechanical Hamiltonians

A Riemannian manifold (M, g) is a C∞-manifold with an Euclidean inner product gx in each TxM that varies smoothly 
with respect to x ∈ M . Therefore a Riemannian metric is a smooth section g: M → Symm+

2 (T M), where Symm+
2 (T M) is 

the set of positive bilinear and symmetric forms in T M . Given a Riemannian metric g on T M , we denote by dT M(·, ·) the 
geodesic distance associated with g on T M . Note that since all Riemannian metrics are Lipschitz equivalent on compact 
subsets, the choice of the metric on T M is not important.

The geodesic flow of the metric g of class C2 is the flow on T M defined by

φt
g : T M −→ T M

(x, v) �−→ (γ
g

x,v(t), γ̇ g
x,v(t)),

where γ g
x,v : R −→ M denotes the geodesic starting at x with initial velocity v , x ∈ M , v ∈ TxM . Since the speed of the 

geodesic is constant, we can consider the flow restricted to UT(M) := {(x, v) ∈ T M : gx(v, v) = 1}.
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Clearly, the orbit of a point (x, v) ∈ UT(M) consists of the tangent vectors to the geodesic defined by (x, v) and periodic 
orbits for the geodesic flow correspond to closed geodesics on M . We write Per(φt

g) ⊂ UT(M) for the set of periodic orbits. 
Recall that (x, v) ∈ UT(M) belongs to the nonwandering set of φt

g , denoted by �(φt
g), if for every neighborhood V of (x, v)

there exists tn → ∞ such that φtn
g (V ) ∩ V �= ∅. We say that (x, v) ∈ UT(M) is a φt

g -recurrent point, and we denote this set 
by R(φt

g), if given any neighborhood V of (x, v), there exists tn such that φtn
g ((x, v)) ∈ V . We have R(φt

g) ⊂ �(φt
g). From 

now on we assume that M is closed and with dimension ≥ 2. We observe that the Liouville volume is invariant under the 
geodesic flow. Thus, Poincaré’s recurrence theorem (see, e.g., [10]) asserts that almost every point (in the Lebesgue measure) 
is recurrent. Therefore, we conclude that Lebesgue almost every point is a nonwandering point and so UT(M) = �(φt

g).
The geodesic flow is a subclass of the Hamiltonian flows. Actually, for the metric g on M , we have the associated 

Hamiltonian defined in the cotangent bundle T ∗M , endowed with the canonical symplectic form, by:

H: T ∗M −→ R

(x, p) �−→ 1
2 (‖p‖∗

x)
2,

where ‖ · ‖∗ stands for the dual norm on the cotangent bundle. Usually, we call H the mechanical Hamiltonian because it is 
given only by the kinetic energy and free of potential.

1.2. Statement of the result and some history

Let Rk(M) denote the set of Ck Riemannian metrics in M . For � ∈ {1, . . . , k} we endow Rk(M) with the C�-topology. 
A property in Rk(M), endowed with the C� topology is said to be C�-generic if it holds in a C�-residual subset of Rk(M). 
In particular, since when � = k the set Rk(M) is a Baire space, by Baire’s Category theorem (see [12]) a Ck-residual subset 
of Rk(M) is Ck-dense in Rk(M). Consequently, a Ck-residual subset of Rk(M) is C�-dense in Rk(M), for any � ∈ {1, . . . , k}.

Let C0([a, b] × UT(M), UT(M)) be the set of continuous maps from [a, b] × UT(M) into UT(M). We say that φ is a C0

flow on the unit tangent bundle UT(M) if φ: R × UT(M) → UT(M) is such that φ(t, ·) is a homeomorphism and φ(·, (x, v))

is a C1 curve on UT(M). As usual, we denote a flow by φt . We are interested in volume-preserving flows, i.e., the Lebesgue 
measure is φt -invariant. We let F 0(UT(M)) be the set of volume-preserving C0 flows on UT(M). For any a < b, we define 
the map:

ρa,b : F 0(UT(M)) −→ C0([a,b] × UT(M),UT(M))

φt �→ φt |[a,b]×UT(M)

The compact-open topology, that we shall denote by τ , is the smallest one making ρa,b continuous (see [19,8]). We 
endow F 0(UT(M)) with τ . Let G 1(UT(M)) be the set of geodesic flows associated with metrics in R2(M). We define the set 
of continuous geodesic flows by the τ -closure of G 1(UT(M)) and denote this set by G 0(UT(M)) ⊂ F 0(UT(M)). Observe that 
(G 0(UT(M)), τ ) is Baire [8, §2.4]. Moreover, if φt

g1
, φt

g2
∈ G 1(UT(M)) and g1 and g2 are C1-close, then, as a consequence of 

Gronwall’s inequality (see, e.g., [16]), we get that φt
g1

and φt
g2

are τ -close. A property in F 0(UT(M)) is said to be τ -generic

if it holds in a τ -residual subset of F 0(UT(M)). Once again, by Baire’s Category theorem, a τ -residual subset of F 0(UT(M))

is τ -dense in F 0(UT(M)).
Given any continuous geodesic flow φ ∈ G 0(UT(M)), the definitions of the nonwandering and recurrent sets of φt can be 

given analogously to the ones given for a geodesic flow φt
g ∈ G 1(UT(M)).

Considering C0-closures of Hamiltonian flows is a subject of growing interest and it is quite related to Gromov–Eliasberg 
symplectic rigidity (see, e.g., [3,13,15,22]). In particular, we mention a recent result on the rigidity of C0-geodesic flows [14, 
§6] which, in rough terms, says that, if the sequence of metrics gn ∈R2(M) converges in the C0-sense to g and its geodesic 
flows are uniformly Cauchy, then the geodesic flows associated with gn , φt

gn
, converge to the geodesic flow of g .

Given a Riemannian metric g that generates a geodesic flow φt
g , a central question in dynamical systems is to know 

whether the periodic orbits of φt
g are dense in �(φt

g). The aim of the present paper is to prove the celebrated Pugh’s 
general density theorem [18] for continuous geodesic flows, i.e. to show that:

Theorem 1. There exists a τ -residual subset G of G 0(UT(M)) such that UT(M) = Per(φt), for any φt ∈ G .

We recall that Klingenberg and Takens theorem (see [11]) assure that, for a dense subset of metrics on a compact 
manifold M , we have infinitely many closed geodesics (see also [20] on more general generic assumptions). It is worth 
noting that on manifolds with negative curvature, the geodesic flow is Anosov and so, by Anosov closing lemma (see, e.g., 
[10]), the closed geodesics are dense in the manifold without any need of generic considerations.

The first attempt to obtain the dissipative version of Theorem 1 for homeomorphisms was in [17] by Palis, Pugh, Shub, 
and Sullivan. However, the proof in [17] was not complete as it was observed in [7]. The complete proof is due to Hur-
ley [9] using dissipative arguments. Hurley’s proof uses the fact that we can create a C0-stable periodic sink by a small 
C0-perturbation and Brouwer’s fixed point theorem guarantees a fixed point for every C0-close homeomorphism. Clearly, 
this strategy is meaningless for the volume-preserving setting because sinks simply do not exist. With respect to the volume-
preserving context, Daalderop and Fokkink proved (see [5, Proposition 4]) that the general density theorem holds. In the 
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present paper, we mainly follow the arguments in [7], adapting them to the geodesic flow framework and combine it with 
the recently proved closing lemma [21]. It is interesting to remark that the general density theorem was first established 
in the C1-class by Pugh [18] in the late 1960s and much later by Pugh and Robinson for volume-preserving and symplectic 
diffeomorphisms as also for Hamiltonians (see [19]). Actually, the general density theorem is a direct consequence of the 
combination of the closing lemma and the stability and persistence of nondegenerated closed orbits given, for example, 
from the hyperbolic (and also elliptic in the conservative case) structure. This stability and persistence holds in the smooth 
case, but sadly the notion of hyperbolicity (and ellipticity) is no longer valid in the topological context, as it is perceptively 
observed by Rifford in [21]: “The Pugh C1-Closing Lemma has strong consequences on the structure of the flow of generic vector 
fields... It is worth noticing that our result is not striking enough to infer relevant properties for generic geodesic flows (for instance, 
the existence of a hyperbolic periodic orbit is not stable under C0 perturbations on the dynamics).” Fortunately, we have at hand a 
range of topological techniques, which will allow us to reach a generic result of undeniable interest.

2. Perturbation results

Let φt
g be the geodesic flow of a Riemannian metric g ∈ R2(M) acting on UT(M), the unit tangent bundle of M . Let 

π : UT(M) → M be the canonical projection. Non-trivial closed geodesics on M are in one-to-one correspondence to the 
periodic orbits of φt

g . From now on we denote by θγ the representative of the closed geodesic γ by choosing a single 
point in the orbit, say θγ = (x, v). Given a closed orbit γ = {φt

g(θ) : t ∈ [0, a]} of period a, we can define the Poincaré map
Pg(
, γ ) as follows: one can choose a local (2 dim(M) − 2)-hypersurface 
 in UT(M) containing θ and transversal to γ
such that there are open neighborhoods 
0 and 
a of θ in 
 and a differentiable arrival function δ : 
0 → R with δ(θ) = a
such that the map Pg(
, γ ) : 
0 → 
a given by v �→ φ

δ(v)
g (v) is a diffeomorphism.

Given a closed geodesic c : R/Z → M , all iterates cm : R/Z → M; cm(t) = c(mt) for a positive integer m are closed 
geodesics too.

A closed orbit γ (or the corresponding closed geodesic c) is called nondegenerate (cf. [4]) if 1 is not an eigenvalue of 
the linearized Poincaré map Pc := Dγ (0)Pg(
, γ ). In this case, γ is an isolated closed orbit and π ◦ γ is an isolated closed 
geodesic.

A Riemannian metric g is called bumpy if all the closed orbits of the geodesic flow are nondegenerate. Since Pcm = Pm
c , 

this is equivalent to saying that if exp(2π iλ) is an eigenvalue of Pc , then λ is irrational. We state the bumpy metric 
theorem [1,2]:

Theorem 2.1 (Bumpy metric theorem). For 2 ≤ k ≤ ∞, the set of bumpy metrics of class Ck is a residual subset of Rk(M).

Recently, in [21], Rifford was able to overcome a problem that was open for a long time and showed how to close an 
orbit of the geodesic flow by a small perturbation of the metric in the C1 topology:

Theorem 2.2 (C1-closing lemma). Let g be a Riemannian metric on M of class Ck with k ≥ 3 (resp. k = ∞), (x, v) ∈ UT(M) and ε > 0

be fixed. Then there exists a metric g̃ of class Ck−1 (resp. C∞) with ‖g̃ − g‖C1 < ε such that the geodesic γ g̃
(x,v) is periodic.

3. Proof of Theorem 1

Let φt ∈ G 0(UT(M)). We define the set of weak-periodic points of φt by

W Per(φt) := {(x, v) = lim
n→∞(xn, vn): (xn, vn) ∈ Per(φt

n), φt
n ∈ G 0(UT(M)) and φt

n →
τ

φt}
We observe that, by the Poincaré recurrence theorem, the geodesic flow φt is nonwandering on UT(M). Let G 2(UT(M))

be the set of geodesic flows associated with metrics in R3(M). Clearly, G 2(UT(M)) is τ -dense in G 0(UT(M)). Therefore, it 
follows from the C1-closing lemma (Theorem 2.2), and using Gronwall’s inequality, that:

Lemma 3.1. If φt ∈ G 0(UT(M)), then UT(M) = W Per(φt).

We say that a closed orbit γ of φt is permanent if any φ̃t ∈ G 0(UT(M)) and τ -arbitrarily close to φt has a φ̃t -periodic 
orbit γ̃ near γ . Let P(φt) denote the set of all permanent closed orbits of φt .

Lemma 3.2. There exists a τ -residual subset G of G 0(UT(M)) such that Per(φt) = P(φt), for any φt ∈ G .

Proof. Along this proof, we borrow some arguments developed in [7] together with some elementary fixed point index 
theory. By Theorem 2.1, there exists a C2-residual subset R0 of R2(M), hence R0 is C1-dense in R2(M), such that every 
metric g in R0 has all the closed orbits of the geodesic flow nondegenerate. As a consequence of Gronwall’s inequality, 
there exists a τ -dense subset G0 of G 1(UT(M)) such that every φt

g in G0 has all the closed orbits nondegenerate. Since 
G 1(UT(M)) is τ -dense in G 0(UT(M)), we get that G0 is τ -dense is G 0(UT(M)).
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We claim that there exists a τ -residual G such that any closed orbit of a flow in G is permanent. We begin by taking 
a countable base for the topology {Bi}i∈N of the unit tangent bundle UT(M) consisting of open balls whose boundaries 
are embedded spheres. The fixed point index will play a crucial role along the proof since, in rough terms, the exis-
tence of non-zero index on a set assures a fixed point in that set and, moreover, displaying non-zero index persists under 
τ -perturbations. Now we define, for every i ∈ N, the following τ -open subsets of G 0(UT(M)), which a priori do not cover 
the whole set G 0(UT(M)), in the following way:

(1) φt ∈ Fi if φt(x, v) �= (x, v) for all (x, v) ∈ Bi and all t ∈ ]0, 1];
(2) φt ∈ Ii if there exists B j with B j ⊂ Bi such that φt(x, v) �= (x, v) for all (x, v) in the boundary of B j and all t ∈ ]0, 1], 

and the index of the time-t map φt (for some t ∈ ]0, 1]) in B j is non-zero.

Note that every geodesic flow with nondegenerate closed orbits with period a ∈ ]0, 1] belongs to every Fi ∪Ii . Therefore, 
G0 is contained in every

Dn,i = {φt ∈ G 0(UT(M)):φnt ∈ Fi ∪ Ii},

where φnt stands for the flow φt with speed reparameterization defined by φnt(x, v) =
n-times

︷ ︸︸ ︷

(φt)(φt)...(φt)(x, v). Since G0 is 
τ -dense is G 0(UT(M)), we obtain that every Dn,i is τ -dense in G 0(UT(M)). As Fi and Ii are τ -open and φt �→ φnt is 
continuous we obtain that every Dn,i is τ -open and dense in G 0(UT(M)). In conclusion, we define the residual subset in 
the lemma by G := ∩Dn,i .

Let us show that Per(φt) = P(φt); take φt ∈ G and γ ∈ Per(φt) of period a, then for any Bi which intersects γ , there 
exist n ∈N and B j with B j ⊂ Bi such that φnt(x, v) �= (x, v) for all (x, v) in the boundary of B j and all t ∈ ]0, 1], and the in-
dex of the time-nt map φnt (for some t ∈ ]0, 1]) in B j is non-zero. Since this property is persistent for small τ -perturbations 
of the original flow, we get that γ is permanent. �

Let UT(M)� be the set of compact subsets of UT(M) endowed with the Hausdorff topology.

Lemma 3.3. The map P: G 0(UT(M)) → UT(M)� , where G 0(UT(M)) is endowed with the τ -topology and UT(M)� is endowed with 
the Hausdorff topology, and defined by P(φt) = Per(φt) is lower semicontinuous on the residual G given by Lemma 3.2.

Proof. We must prove that for any φ̃t ∈ G , and any ε > 0, there exists a neighborhood V of φ̃t such that P(φ̃t) ⊆ Bε(P(φt))

for all φt ∈ V , or, in other words, there are no implosions of the number of closed orbits when we perturb φ̃t . But Lemma 3.2
says that Per(φ̃t) = P(φ̃t) and the proof is completed by recalling the definition of permanent closed orbit. �
Proof of Theorem 1. Noting that UT(M) = �(φt), we will prove that �(φt) = Per(φt) for some τ -generic flow in G 0(UT(M)). 
From Lemma 3.3 the map P: G 0(UT(M)) → UT(M)� defined by P(φt) = Per(φt) is lower semicontinuous on G . It is well-
known (see [6]) that the continuity points of P|G are a residual subset G1 ⊂ G , hence a residual subset of G 0(UT(M)). Let 
us see that if φt ∈ G1 (i.e. φt is a continuity point of P|G ), then UT(M) = Per(φt). The non-obvious inclusion is UT(M) ⊂
Per(φt). Assume, by contradiction, that there exists (x, v) ∈ UT(M) \ Per(φt). By Lemma 3.1, let {φt

n}n∈N ⊂ G 0(UT(M)) and 
{(xn, vn)}n∈N ⊂ Per(φt

n) be such that φt
n →τ φt and limn→∞(xn, vn) = (x, v). By Lemma 3.2 there exists {φ̃t

n}n∈N such that 
(x̃n, ̃vn) ∈ P(φ̃t

n) and each φ̃t
n becomes τ -arbitrarily close to φt

n .
Since G 0(UT(M)) endowed with the τ -topology is a Baire space, we get that G is dense in G 0(UT(M)). Therefore, there 

exist {φt
n}n∈N ⊂ G and {(xn, vn)}n∈N ⊂ Per(φt

n) such that

dT M((x̃n, ṽn), (xn, vn)) <
1

n

and φt
n becomes τ -arbitrarily close to φ̃t

n .
We conclude that φt

n →τ φt and limn→∞(xn, vn) = (x, v). Then, since φt is a continuity point of P|G we have that 
limn→∞ P(φt

n) = P(φt), i.e., limn→∞ Per(φt
n) = Per(φt). Finally, we observe that (x, v) ∈ Per(φt

n), or equivalently, (x, v) ∈
Per(φt) which is a contradiction with the assumption that (x, v) ∈ UT(M) \ Per(φt). �
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