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Let X be an algebraic variety defined over an algebraically closed field. We study the fiber 
of the Riemann–Zariski space above a closed point x ∈ X . If x is regular, we prove that 
its homeomorphism type only depends on the dimension of X . If x is a singular point of 
a normal surface, we show that it only depends on the dual graph of a good resolution 
of (X, x) up to some precise equivalence. Both results also hold for the normalized non-
Archimedean link of x in X .

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit X une variété algébrique définie sur un corps algébriquement clos. On étudie la fibre 
de l’espace de Riemann–Zariski au-dessus d’un point fermé x ∈ X . Si x est régulier, on 
démontre que son type d’homéomorphisme ne dépend que de la dimension de X . Si x est 
un point singulier d’une surface normale, on démontre qu’il ne dépend que de la classe 
du graphe d’une bonne résolution de (X, x) modulo une relation d’équivalence précise. Ces 
deux résultats sont aussi vrais pour l’entrelac non archimédien normalisé de x dans X .

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Valuations are a fundamental tool in algebraic geometry. Historically they played an important role in Zariski’s approach 
to the problem of resolution of singularities of an algebraic variety. In [14], Zariski endowed the set of all valuation rings of 
the function field of the variety containing the base field with a topology and established its quasi-compactness. This was a 
key point in his program for resolution. It turns out to be also a key result in some recent attempts to solve this problem 
in positive characteristic following new strategies also using local uniformization (see [2,12]).

In this note we consider an algebraic variety X defined over an algebraically closed field k (i.e., an integral separated 
scheme of finite type over k) with function field K and we fix a closed point x in X . We initiate the study of the homeo-
morphism type of the space RZ(X, x) consisting of all valuations rings of K dominating the local ring OX,x , endowed with 
the topology induced by the Zariski topology. We call RZ(X, x) the Riemann–Zariski space of X at x. Our goal is to clarify the 
relation between the topological properties of this space and the local geometry of X at x. Note that the one-dimensional 
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case is well understood. If X is an algebraic curve then RZ(X, x) is in bijection with the local analytic branches of X at x. 
However, the situation is richer in higher dimension.

Similar preoccupations have appeared in the context of the theory of analytic spaces as developed by Berkovich and 
others after [1]. Adopting this point of view, one associates with X is analytification Xan. A point of Xan is an absolute value 
(giving rise to a rank-one valuation by taking minus the logarithm) on the residue field of a point of X , extending the trivial 
absolute value of k. We may consider the subspace L(X, x) of all points in Xan that specialize to x excepting the trivial 
one. One nice feature of this space, established by Thuillier in [13], is that it has the homotopy type of the dual complex 
associated with the exceptional divisor of a resolution of singularities of (X, x) whose exceptional divisor has simple normal 
crossings.

In fact, the space RZ(X, x) is closely related to the normalized non-Archimedean link NL(X, x) of x in X , which is obtained 
from L(X, x) by identifying points defining equivalent valuations (see [3]). There is a canonical continuous surjective map 
from RZ(X, x) to NL(X, x), and the latter appears to be the largest Hausdorff quotient of the former space in the case of 
normal surfaces. A detailed proof of these facts will be given in a forthcoming paper of the author.

Our first main result is the following:

Theorem A. Let x ∈ X, y ∈ Y be regular closed points of two algebraic varieties defined over k. The following statements are equivalent:

(i) The spaces RZ(X, x) and RZ(Y , y) are homeomorphic.
(ii) The spaces NL(X, x) and NL(Y , y) are homeomorphic.

(iii) The varieties X and Y have the same dimension.

In particular, the homeomorphism type of RZ(X, x) and NL(X, x) depends only on the dimension of the variety X and 
the base field k. In dimension two, one can be more specific. A topological model for NL(A2

C
, 0) has already been proposed 

in [5, Section 3.2.3]. The homeomorphism type of an arbitrary Berkovich curve is also treated in [7] under a countability 
assumption on the base field. Since NL(A2

k , 0) is homeomorphic to the closed unit ball over the discrete valued field k((t)), 
their result shows that NL(A2

k , 0) is a Ważewski universal dendrite when k is countable.
Next, we consider the normal surface singularity situation. We shall say that two finite connected graphs are equivalent 

if either they are both trees or neither is a tree, and the topological realizations of their cores, in the sense of [11], are 
homeomorphic.

Theorem B. Let x ∈ X and y ∈ Y be singular points of normal algebraic surfaces defined over k and �X ′ , �Y ′ the dual graphs associated 
with two good resolutions of (X, x) and (Y , y), respectively. The following statements are equivalent:

(i) the spaces RZ(X, x) and RZ(Y , y) are homeomorphic.
(ii) the spaces NL(X, x) and NL(Y , y) are homeomorphic.

(iii) the graphs �X ′ and �Y ′ are equivalent.

Observe that this statement implies that the spaces of valuations RZ(X, x) and NL(X, x) associated with any rational 
surface singularity (X, x) are homeomorphic to RZ(A2

k , 0) and NL(A2
k , 0) respectively. In order to obtain more precise infor-

mation on the singularity (X, x), it will be necessary to explore finer structures of RZ(X, x). In fact, the spaces of valuations 
RZ(X, x) and NL(X, x) have more structure than just topology. Actually they are both locally ringed spaces. The second car-
ries a natural analytic structure locally modeled on affinoid spaces over k((t)). Note that these local k((t))-analytic structures 
are not canonical and cannot in general be glued to get a global one. This structure was studied in [3] and shown (proof of 
Lemma 9.3) to determine the completion of the local ring OX,x .

2. Homeomorphism type in the regular case

Throughout this section, x ∈ X and y ∈ Y are regular closed points of two algebraic varieties X, Y defined over the same 
algebraically closed field k. If X and Y are reduced to x and y respectively, then all spaces of valuations are singletons. 
Therefore we may assume that X and Y have dimension at least one. We indicate how Theorem A can be proved.

(i) ⇒ (iii) Recall that the Krull dimension of a topological space Z is the supremum of the lengths of all chains of irreducible 
closed subspaces of Z . A chain ∅ � Z0 � . . . � Zl ⊆ Z is of length l. Then we show that RZ(X, x) has Krull dimension 
dim X − 1, which proves that (i) implies (iii).
(ii) ⇒ (iii) First observe that the space NL(X, x) has Krull dimension zero since it is Hausdorff. We look instead at its 
covering dimension as defined in [10, Ch. 3, Definition 1.1], and we show that NL(X, x) has covering dimension dim X − 1. 
This proves that (ii) implies (iii).
(iii) ⇒ (ii) Under our assumptions, if X and Y have the same dimension then the formal completions of the local rings OX,x
and OY ,y are isomorphic as k-algebras.

Observe also that a point in NL(X, x) defines in a canonical way a multiplicative seminorm on the completion of OX,x
whose restriction to k is trivial and suitably normalized. These two observations show that (iii) implies (ii).
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(iii) ⇒ (i) In the Riemann–Zariski setting, the proof is more involved since a valuation on OX,x does not extend in general 
to a valuation on the completion of that ring in a unique way. To prove that (iii) implies (i), we rely on [6, Theorem 7.1]
that allows to extend valuations to the henselization of OX,x in a canonical way. We conclude by using the fact that the 
henselizations of the regular local rings OX,x and OY ,y are isomorphic as k-algebras since dim X = dim Y .

3. The core of a graph

We now introduce the notions necessary to state Theorem B.
By a graph, we mean a finite connected graph with at least one vertex, without loops and without multiple edges. Recall 

that a graph � is a purely combinatorial object that can be seen as a finite one-dimensional CW-complex. To be precise, 
we endow the set of vertices V of � and its set of edges E with the discrete topology and the unit interval [0, 1] with 
the induced topology from the standard topology of the real line. The topological space |�|, which we call the topological 
realization of �, is the quotient space of the disjoint union V � (E × [0, 1]) under the natural identifications v ∼ (e, 0) and 
v ′ ∼ (e, 1) given by incidence of vertices and edges.

We say that a graph is a tree if its topological realization is simply connected. Following [11, Section 7] we associate 
with any graph its core (see also the definition of the skeleton of a quasipolyhedron given in [1, p. 76]). By the degree of a 
vertex we mean the number of edges connected to it.

Definition 3.1. The core of a graph � that is not a tree is the subgraph of � obtained by repeatedly deleting a vertex of 
degree one and the edge incident to it, until no vertex of degree one remains. We denote the core of � by Core (�).

By convention we define the core of a tree to be empty. Let � be a graph which is not a tree. Observe that if � has 
no vertex of degree one, then � is its own core. Note also that |�| admits a deformation retraction to |Core (�) |. The 
complement of |Core (�) | in |�| is the set of points in |�| that admit an open neighborhood whose closure is a tree and 
whose boundary is reduced to a vertex of �. We may thus think of � as its core with some disjoint trees attached to it.

We introduce now the equivalence relation in the set of graphs on which the characterization given in Theorem B relies 
on:

Definition 3.2. Two graphs � and �′ are equivalent if either their cores are both empty or neither is empty and |Core (�) |
is homeomorphic to |Core

(
�′) |.

Note that this equivalence relation is stricter than the homotopy equivalence. The three graphs consisting of two triangles 
sharing a vertex, two triangles sharing a side, and a line segment with a triangle attached to each endpoint, have all 
homotopy equivalent topological realizations, but are not pairwise equivalent.

4. Homeomorphism type in the normal surface singularity case

Let x be a singular point of a normal algebraic surface X defined over an algebraically closed field k. We say that a 
resolution of singularities πX ′ : X ′ → X is a good resolution if the exceptional divisor E X ′ = π−1

X ′ (x) is a divisor with normal 
crossing singularities such that its irreducible components are smooth and the intersection of any two of them is at most a 
point.

With any good resolution is associated its dual graph �X ′ whose vertices are in bijection with the irreducible components 
of E X ′ and where two vertices are adjacent if and only if the corresponding irreducible components of E X ′ intersect. As 
explained in [4, Section 1.1], the topological realization of any dual graph �X ′ can be embedded into NL(X, x) as a closed 
set and there exists a continuous retraction map rX ′ : NL(X, x) → |�X ′ |.

We now present a sketch of the proof of Theorem B.

(i) ⇒ (ii) The inverse image of a point ν ∈ NL(X, x) by the canonical map RZ(X, x) → NL(X, x) consists of all valuations 
lying in the closure of a valuation associated with ν in a way that depends on its nature. This fact implies that NL(X, x) is 
the largest Hausdorff quotient of RZ(X, x) (see [8, Ch. V, 9, Proposition 2]), and proves that (i) implies (ii).
(ii) ⇒ (iii) The key observation is the following:

Proposition 4.1. Let πX ′ : X ′ → X be a good resolution. Any fiber r−1
X ′ (ν) under the natural retraction rX ′ : NL(X, x) → |�X ′ | is a tree 

whose boundary is reduced to ν .

A proof of this fact follows from [5, Theorem 6.51]. One can show that the fiber r−1
X ′ (ν) is in fact an analytic disk when 

endowed with its canonical analytic structure (see [3, Proposition 9.5 (i)]).
We mean here by a tree a topological space which is homeomorphic to a rooted nonmetric tree in the sense of [5, 

Sections 3.1 and 7.2] (see also [9, Definition 3.1]). Roughly speaking, it is a topological space where any two different points 
are joined by a unique real line interval. The trees we defined in Section 3 are trees in this sense.
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Definition 4.2. The core of NL(X, x) is defined to be the set of all points in NL(X, x) that do not admit an open neighborhood 
whose closure is a tree and whose boundary is reduced to a single point of NL(X, x). We denote it by Core (NL(X, x)).

In [1, p. 76] the core is referred to as the skeleton. Observe that by definition Core (NL(X, x)) is empty if and only if 
NL(X, x) is a tree. Proposition 4.1 and the fact that any arcwise connected subspace of a tree is also a tree imply:

Proposition 4.3. Let πX ′ : X ′ → X be a good resolution. The space NL(X, x) is a tree if and only if �X ′ is a tree. If neither is a tree, we 
have Core (NL(X, x)) = |Core (�X ′ ) | as subspaces of NL(X, x).

It directly follows from Proposition 4.3 that (ii) implies (iii).
(iii) ⇒ (i) This is the most delicate part of the proof. We start with two good resolutions πX ′ : X ′ → X and πY ′ : Y ′ → Y , and 
suppose that their dual graphs are equivalent in the sense of Definition 3.2. Our goal is to construct an homeomorphism 
from RZ(X, x) to RZ(Y , y). We first construct two good resolutions πX ′′ : X ′′ → X and πY ′′ : Y ′′ → Y which factor through πX ′
and πY ′ respectively and such that �X ′′ and �Y ′′ are isomorphic graphs. This isomorphism determines a natural bijection 
between the irreducible components {Ei}m

i=1 of E X ′′ and those, say {Di}m
i=1, of EY ′′ . We map the divisorial valuation in 

RZ(X, x) defined by Ei to the divisorial valuation in RZ(Y , y) defined by Di . Thus, in order to define a bijection from 
RZ(X, x) to RZ(Y , y), it suffices to concentrate on the valuations having as center in X ′′ a closed point. To do so we choose 
a bijection σ between the set of closed points of E X ′′ and EY ′′ such that σ(Ei ∩ E j) = Di ∩ D j and σ(Ei) ⊆ Di . The idea is 
to apply Theorem A to obtain an homeomorphism from RZ(X ′′, x′′) to RZ(Y ′′, σ(x′′)). The construction of the bijection from 
RZ(X, x) to RZ(Y , y) using this idea requires a careful local study at the points of E X ′′ . The fact that it is an homeomorphism 
then follows by examination of the behaviors of sequences of centers and their images by σ .
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