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In this note, we propose a nonparametric spatial estimator of the regression function 
x → r(x) := E[Y i|Xi = x], x ∈ R

d , of a stationary (d + 1)-dimensional spatial process 
{(Y i, Xi), i ∈ Z

N }, at a point located at some station j. The proposed estimator depends 
on two kernels in order to control both the distance between observations and the spatial 
locations. Almost complete convergence and consistency in Lq norm (q ∈ N

∗) of the kernel 
estimate are obtained when the sample considered is an α-mixing sequence.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note, nous proposons un estimateur non paramétrique spatial de la fonction de 
régression x → r(x) := E[Y i|Xi = x], x ∈ R

d , d’un champ stationnaire {(Y i, Xi), i ∈ Z
N } de 

dimension (d + 1), à un point localisé à un site donné j. L’estimateur proposé est composé 
de deux noyaux permettant de contrôler à la fois la distance entre les observations et entre 
les sites. La convergence presque complète ainsi que la convergence en moyenne d’ordre q
(norme Lq) (q ∈ N

∗) de l’estimateur à noyaux sont obtenus en considérant des processus 
α-mélangeants.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

During the first half of the twentieth century, spatial statistics were mainly studied in the scope of geostatistics through 
the parametric framework. However, a preselected parametric model might be too restricted or too low-dimensional to fit 
unexpected features. Consequently, nowadays, a dynamic concerns the deployment of nonparametric methods to spatial 
statistics. In this note, we are interested in the nonparametric spatial regression estimation, which has received a great 
deal of attentional from the scientific community. Firstly, Biau and Cadre [1] dealt with the kernel prediction of a strictly 
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stationary random field indexed in (N∗)N . Later, Dabo-Niang and Yao [6] were interested in the kernel regression estimation 
and prediction of continuously indexed random fields. In [11], nonparametric kernel prediction was considered for spatial 
stochastic processes when a stochastic sampling design is assumed for the selection of random locations. A main difference 
between them is that the last is based on a kernel that controls the distance between sites contrary to the others, which 
deal with a kernel on the values of the field.

More recently, Wang et al. [16] proposed a local linear spatio-temporal prediction model, using a kernel weight function 
taking into account the distance between sites. The specificity of the prediction procedure of Wang et al. [16] is to be based 
on the assumption that the error term of the model is autocorrelated, contrary to the present work.

Our proposed regression estimator takes advantages of each estimator introduced previously. In fact, it depends on two 
kernels, one of which controls the distance between observations and the other controls the spatial dependence structure. 
The advantage of the proposed estimate is to take directly into account the spatial dependency in its form, which is par-
ticularly interesting in a prevision context. This idea has been presented in [4] in the context of density estimation and in 
[15] to deal with a regression problem for functional data. The new kernel spatial estimator of the regression function is 
presented in Section 2. Then, in Section 3, the almost complete convergence and consistency in Lq norm (q ∈ N

∗) of the 
kernel estimate are obtained when the sample considered is an α-mixing sequence.

2. Kernel spatial estimator of the regression function

We consider a spatial process (Z i = (Xi, Y i) ∈ R
d × R, i ∈ Z

N ) defined over some probability space (�, F , P) with same 
distribution as (X, Y ) having unknown density f X,Y on Rd+1. The density function of X on Rd is f (·). For the sake of 
simplicity, we will suppose that the variable Y is bounded. We are interested in the following regression model Y i =
r(Xi) + εi , where r(·) = E(Y |X = x) is an unknown function, with real values, defined by r(x) = ϕ(x)/ f (x) where ϕ(x) =∫

yf XY (x, y)dy, x ∈ R
d , (εi)i∈ZN is a centered spatial process independent of (Xi)i∈ZN . The process is observed over the 

domain In = {i = (i1, . . . , iN), 1 ≤ ik ≤ nk, k = 1, . . . , N}. We denote n = (n1, . . . , nN); let n̂ := n1 × . . . × nN be the sample 
size. From now on, we assume for simplicity that n1 = n2 = . . . = nN = n (e.g., [7–9]) and write n → ∞ if n → ∞, but the 
following results can be extended to a more general framework.

We are interested in the regression estimation of r(·), in particular the prediction of Y j under the condition that Xj = x
(as in [16]), which we denote in what follows xj; on the matter of the concerned location j, see Remark 1. Considering 
normalized sites, the kernel estimator of r(xj), is defined as

rn(xj) = ϕn(xj)

fn(xj)
if fn(xj) �= 0; rn(xj) = Y (empirical mean), otherwise,

where

ϕn(xj) = 1

an,jb
d
n

∑
i∈In

Y i K1

(
b−1

n (xj − Xi)
)

K2

(
ρ−1

n

∥∥∥∥ j − i

n

∥∥∥∥)
,

fn(xj) = 1

an,jb
d
n

∑
i∈In

K1

(
b−1

n (xj − Xi)
)

K2

(
ρ−1

n

∥∥∥∥ j − i

n

∥∥∥∥)
,

with an,j = ∑
i∈In

K2

(
ρ−1

n

∥∥∥ j−i
n

∥∥∥)
. In addition, K1 and K2 are kernels respectively defined on Rd and R, bn and ρn are 

bandwidths tending to zero. Note that K2

(
ρ−1

n

∥∥∥ j−i
n

∥∥∥)
= K2

( ‖j−i‖
nρn

)
, (where i

n = ( i1
n , i2

n , . . . , iN
n )). For each site j, the es-

timator rn(xj) is a function of the number kn = kn,j = ∑
i 1‖i−j‖≤dn of neighbors sites i, for which the distance between i

and j is less or equal to distance dn > 0 such that dn → ∞ as n → ∞. More precisely, in what follows, we assume that 
kn = CNdN

n (1 + o(1)) as dn → ∞ where CN is a constant that depends on N . This is based on the problem of counting 
points with integer coordinates in the N-dimensional ball (see, e.g., [3]). In this work, dn is chosen to be nρn involving that 
dN

n = n̂ρN
n and kn = O (̂nρN

n ). We notice that the kernel K2 is here to handle the nearness between locations.

Remark 1.

– As said above, we are particularly interested here in a spatial prediction methodology taking explicitly into account the 
spatial locations. Suppose one wants to predict Y i in some unobserved location j. More precisely, we suppose that the 
field (Xi, Y i)i∈ZN is observed on the set On contained in In . The main purpose is to predict the unobserved value Y j
given Xj for a location j ∈ In but j /∈On .
To achieve the forecasting at the site j, we propose to use the regression function estimator rn(Xj). Then, the prediction 
of the value of the field (Y i)i∈ZN at the location j /∈ On is written

Ŷ j = rn(Xj) =
∑

i∈On
Y i K1

(
Xj−Xi

bn

)
K2

(
ρ−1

n

∥∥∥ j−i
n

∥∥∥)
∑

i∈O K1

(
Xj−Xi

b

)
K2

(
ρ−1

n

∥∥∥ j−i
n

∥∥∥) . (1)
n n
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One can derive an asymptotic result such as almost complete convergence and consistency in Lq norm (q ∈ N
∗) for Ŷ j

from the kernel regression estimate, given below.

– More generally, one can extend Ŷ j by considering Ŷ j =
∑

i∈On Y i K1

(
Xj−Xi

bn

)
K2

(
i−j
ρn

)
∑

i∈On K1

(
Xj−Xi

bn

)
K2

(
i−j
ρn

) , where sites i and j are not normalized 

and K2(·) is a kernel on RN .

3. Assumptions and results

To take into account the spatial dependency, we assume that the process (Z i) satisfies the following α-mixing condition: 
there exists a function ϕ(x) ↘ 0 as x → ∞, such that α(σ (S), σ(S ′)) ≤ ψ(Card(S), Card(S ′))ϕ(dist(S, S ′)), where S and 
S ′ are two finite sets of sites, Card(S) denotes the cardinality of S , σ (S) = {Z i, i ∈ S} denotes a σ -field generated by Z i , 
dist(·, ·) is the Euclidean distance, ψ(·) is a positive symmetric function nondecreasing in each variable. We will assume 
that ϕ (i) tends to zero at a polynomial rate, i.e. ϕ (i) ≤ Ci−θ . Let un = ∏N

i=1(log ni)(log log ni)
1+ε , then 

∑
n∈NN

1
n̂un

< ∞. 
Some consistency results are obtained under the following assumptions:

A1: the density functions f X,Y and f are continuous on Rd+1 and Rd, respectively;

A2: the density and the regression functions satisfy the Lipschitz condition, thus

| f (x) − f (y)| ≤ C‖x − y‖ and |r(x) − r(y)| ≤ C‖x − y‖, ∀x, y ∈R
d;

A3: the functions K1(·) and K2(·) are bounded integrable kernels on R. Moreover, the kernel K1(·) satisfy some Lipschitz condition;
A4: there exist some constants C1i and C2i with 0 < C1i < C2i < ∞, for i = 1, 2, such that

C111[0,1](s′s) ≤ K1(s) ≤ C211[0,1](s′s) for s ∈R
d,

C121[0,1](t) ≤ K2(t) ≤ C221[0,1](t) for t ∈R,

where s′ denotes the transpose of s;
A5: Local dependence condition. The joint probability density f Xi,Xj of (Xi, Xj) exists, is bounded and ∀u, v ∈R

d, for some constant 
C > 0, verifies

| f Xi,Xj(u, v) − f Xi(u) f Xj(v)| < C;
A6: ψ(n, m) ≤ C min(n, m) and ̂nbdθ1

n ρ
Nθ1
n log n̂θ2 uθ3

n → ∞ with the mixing coefficient θ > N(q + 2), q > 1 and

θ1 = qN − θ

N(q + 2) − θ
> 0; θ2 = θ − 2N

N(q + 2) − θ
< 0; θ3 = 2N

N(q + 2) − θ
< 0;

A7: ψ(n, m) ≤ C(n + m + 1)β̃ and ̂nb
dθ ′

1
n ρ

Nθ ′
1

n log n̂θ ′
2 u

θ ′
3

n → ∞ with the mixing coefficient θ > N(q + 2β̃ + 1), q > 1, β̃ > 1 and

θ ′
1 = N(q − 1) − θ

N(q + 2β̃ + 1) − θ
> 0; θ ′

2 = θ − N

N(q + 2β̃ + 1) − θ
< 0; θ ′

3 = 2N

N(q + 2β̃ + 1) − θ
< 0.

Remarks. These assumptions are classically used in spatial nonparametric modeling.

– The assumptions A2 and A3 allow us to control the bias of the estimator. The Lipschitz condition A2 allows the precise 
rate of convergence to be found, whereas a continuity-type model would give only convergence results.

– Assumption A4 is imposed for the sake of simplicity and brevity of the proofs. We will use Assumption A4 both to 
control the bias and the distances between sites. This condition is verified, for example, if K2 is defined by K2(t) =
1[0,1](t) or any function defined as K2(t) = (u(t))1[0,1](t) where u is a non-increasing function such that u(1) > 0.

– The local dependence condition (A5) is a classical condition in kernel estimation based on dependent data (see, e.g., [2]). 
The difference between this condition and the mixing condition is: condition A5 controls the dependency through the 
distance between f Xi Xj and f Xi f Xj when the mixing condition controls the dependency through the distance between 
P (A ∩ B) and P (A) P (B) (as previously defined). Naturally, both conditions are linked. The link between them can be 
found, for example, in [6]. Like the mixing condition, condition A5 is used to control the variance term of the estimation.

– The assumptions A6 and A7 are classical technical assumptions that appear (in the calculations when studying the 
asymptotic behavior of the estimator) in the particular case where the mixing coefficient is such that ϕ(i) verifies: 
ϕ (i) ≤ Ci−θ , for some θ > 0 (see [12] and [13] for some examples). Each of these conditions is related to a specific case 
of mixing in the spatial context and are used respectively in [12] and [14].

The two following theorems give some results about the consistency of the estimator proposed for the regression func-
tion.
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Theorem 3.1. Under Assumptions A1–A5 and A6 or A7, rn(xj) converges almost completely (a.c.) to r(xj) and

|rn(xj) − r(xj)| = O

(
bn +

√
log n̂

n̂ bd
n ρN

n

)
a.c.

Pattern of the proof. We write

|rn(xj) − r(xj)| ≤
(

1

fn(xj)
|ϕn(xj) − ϕ(xj)| + ϕ(xj)

fn(xj) f (xj)
| fn(xj) + f (xj)|

)
1[∑

i∈In Wni �=0
] + Y 1[∑

i∈In Wni=0
], (2)

where Y is the empirical mean of the Y i .
We study the term | fn(xj) − f (xj)| since it is a particular case of |ϕn(xj) − ϕ(xj)| when Y i is equal to 1. The result is 

obtained studying separately the bias and the variance terms. It is easy to show that the bias |E( fn(xj)) − f (xj)| = O (bn). 
For the variance, an adjustment of Lemma 3.2 in [6] is used to obtain that

P = P(| fn(xj) −E( fn(xj))| > ε)

≤ CN n̂−a + 2N+2 C

an,jb
d
n
ψ([̂t − 1]pN , pN)ϕ(p)̂nε−1

with a = δ2

22N+4C + 2N+2CNδ
and ε = δ

(
log n̂

n̂bd
nρN

n

)1/2
, δ > 0, and p =

(
n̂bd

nρN
n

log n̂

) 1
2N

. In both assumptions on ψ(n, m) (A6 and

A7) and by appropriate choice of δ > 2N+1CN , the bound of 
∑

n=(n1,...,nN )∈NN P is the general term of a convergent series.
We have

P

⎛⎝⎡⎣∑
i∈In

Wni = 0

⎤⎦⎞⎠ ≤ P
[| fn(xj) −E[ fn(xj)]| > ε

]
for n large enough.

So the last term of (2) is a.c. zero for large n.

Theorem 3.2. Under Assumptions A1–A5 and A6 or A7, rn(xj) converges in mean of order q to r(xj) and

‖rn(xj) − r(xj)‖q = O

(
bn +

√
1

n̂bd
nρN

n

)
, q > 1.

Pattern of the proof. Let Wni = K1

(
b−1

n (xj−Xi)
)

K2

(
ρ−1

n

∥∥∥ j−i
n

∥∥∥)
∑

i∈In K1

(
b−1

n (xj−Xi)
)

K2

(
ρ−1

n

∥∥∥ j−i
n

∥∥∥) and by adopting the convention 0/0 = 0, we have ∑
i∈In

Wni = 0 or 1. Consequently, we can deal with the following decomposition:

‖rn(xj) − r(xj)‖q ≤ E
1/q

⎡⎣⎛⎝∑
i∈In

Wni
[
E(Y i|Xi) − r(xj)

]⎞⎠ 1[∑
i Wni=1

]
⎤⎦q

+E
1/q

⎡⎣⎛⎝∑
i∈In

Wni [Y i −E(Y i|Xi)]

⎞⎠1[∑
i Wni=1

]
⎤⎦q

+E
1/q

⎡⎣⎛⎝ 1

n̂

∑
i∈In

Y i − r(xj)

⎞⎠ 1[∑
i Wni=0

]
⎤⎦q

.

The study of the three terms of the right-hand-side gives the following result E
1/q

[
rn(xj) − r(xj)

]q = O (bd
n) +

O  
((̂

nbd
nρN

n

)−1/2
)

+ O  
((̂

nbd
nρN

n

)−1/2
)

obtained by applying Lemma 2.2 in [10].

Details of the proofs are provided in [5].
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