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We show that in the future cone of the Minkowski space, the pseudo-norm satisfies a 
Hlawka-type inequality:

�(x) + �(y) + �(z) + �(x + y + z) ≤ �(x + y) + �(y + z) + �(z + x).

The inequality is opposite to that in the Euclidean case, exactly as in the situation of the 
Cauchy–Schwarz inequality.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans le cône du futur de l’espace de Minkowski, la pseudo-norme associée à la métrique 
lorentzienne satisfait une inégalité du type de Hlawka :

�(x) + �(y) + �(z) + �(x + y + z) ≤ �(x + y) + �(y + z) + �(z + x).

Le signe est l’opposé de celui du cas euclidien, tout comme dans l’inégalité « à la 
Cauchy–Schwarz ».

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Motivation and statement

In a Euclidean space E , the Hlawka inequality (see [3] or [4]) reads:

‖x + y‖ + ‖y + z‖ + ‖z + x‖ ≤ ‖x‖ + ‖y‖ + ‖z‖ + ‖x + y + z‖, ∀x, y, z ∈ E. (1)

This inequality is sharp in three ways:

• the equality holds true if one of the vectors is 0,
• the equality holds true if x, y, z are positively collinear,
• the equality holds true if x + y + z = 0.
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The two first equality cases are tightly related to the fact that the norm is positively homogeneous of degree one. Therefore, 
let us say that a continuous function f : K → R, defined over a closed convex cone in Rn , which is positively homogeneous 
of degree one, satisfies a Hlawka-type inequality if

f (x + y) + f (y + z) + f (z + x) ≤ f (x) + f (y) + f (z) + f (x + y + z), ∀x, y, z ∈ K . (2)

A necessary condition for this to happen is obtained by taking z = y:

2 f (x + y) ≤ f (x) + f (x + 2y), ∀x, y ∈ K .

This tells us that if u, v ∈ K are ordered, that is if v − u ∈ K , then the convexity inequality

f (u + v) ≤ f (u) + f (v)

holds true. Actually, we have a bit more

Proposition 1.1. If f is C2 in the interior of K and f satisfies the Hlawka-type inequality, then f is convex.

Proof. It is enough to prove that the Hessian D2 f is non-negative at interior points. For this, let us denote

φ(x, y, z) = f (x) + f (y) + f (z) + f (x + y + z) − f (x + y) − f (y + z) − f (z + x),

which is non-negative by assumption. Since φ(x, x, x) = 0, the Hessian of φ at (x, x, x) must be non-negative if x is interior 
(one finds easily that the gradient is zero). Let us just compute the Hessian with respect to x:

D2
xφ(x,x,x) = D2 fx + D2 f3x − 2D2 f2x.

Because D2 f is homogeneous of degree −1, one deduces

0 ≤ D2
xφ(x,x,x) = 1

3
D2 fx �

The proposition above suggests to investigate which among the convex functions, positively homogenenous of degree 
one, satisfy a Hlawka inequality. The first natural candidates are norms, where K = R

n . However it is known that the 
Hlawka inequality is not always true: Witsenhausen [5] proved that a finite-dimensional normed space whose unit ball is a 
polytope satisfies (1) if and only if it is L1-embeddable. See also Theorem 8.3.2 in [1].

Other candidates are given in terms of hyperbolic polynomials. Recall that a polynomial p over Rn , homogeneous of degree 
d, is hyperbolic in the direction of some vector e if p(e) > 0 and if for every x ∈ R

n , the roots of the univariate polynomial 
t �→ p(x + te) are real. Gårding [2] introduced this notion in connection with the well-posedness theory of the Cauchy 
problem for hyperbolic differential operators; the vector e is time-like. He proved two important facts:

• the connected component of e in {p > 0} is a convex cone. Its elements are time-like vectors too;
• if we denote K the closure of this cone, so that p ≥ 0 over K , the function x �→ p(x)1/d is concave over K .

An especially interesting example is that of p(A) = det A over the space Symd(R) (here n = d(d+1)
2 ), which is hyperbolic in 

the direction of Id . The future cone K is made of the positive semi-definite matrices, and the concavity property bears the 
name of Minkovski’s determinantal inequality:

(det A)1/d + (det B)1/d ≤ (det(A + B))1/d.

It is therefore natural to consider f p = −p1/d , where p is a homogeneous hyperbolic polynomial of degree d, and ask 
whether f p satisfies the Hlawka inequality, that is whether

p(x)1/d + p(y)1/d + p(z)1/d + p(x + y + z)1/d ≤ p(x + y)1/d + p(y + z)1/d + p(z + x)1/d, ∀x, y, z ∈ K . (3)

The following example shows that this turns out to be false in general. Take again for p the determinant over symmetric 
matrices, where d ≥ 3. One can write Id = P + Q + R as the sum of non-trivial mutually orthogonal projectors. Then 
det P = · · · = det(Q + R) = 0, but det(P + Q + R) = 1, so that (3) is violated. This flaw looks to be caused by the fact that 
the boundary of K has flat parts.

The above counter-example leaves open the case d = 2, where the determinant is a non-degenerate quadratic form. In 
degree 2, the determinant becomes actually a paradigm, because of the following observations:

• the Hlawka inequality involves only three vectors. By restricting to the space spanned by x, y and z, it is therefore 
enough to consider forms in 2 or 3 space variables;

• a quadratic form q is hyperbolic if and only if its signature is (1, n − 1); in other words, when (Rn, q) is a Minkowski 
space. In particular, there is only one hyperbolic quadratic form in Rn , up to a change of variable.
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Since Sym2(R), equipped with the determinant, is a Minkowski space of dimension 3, we deduce that the status of the 
Hlawka inequality for −√

det is the same as the status for any Minkowski metric. Our main result is as follows.

Theorem 1.1. The reverse Hlawka inequality is true in Minkowski spaces: if q is a quadratic form on Rn, with signature (1, n − 1), then 
the “length” � = √

q satisfies

�(x) + �(y) + �(z) + �(x + y + z) ≤ �(x + y) + �(y + z) + �(z + x) (4)

for every vectors x, y, z in the future cone.

Remarks.

• The fact that the sign in this inequality is opposite to the sign in the Euclidean Hlawka inequality (1) is all but a 
surprise. The same flip occurs in the Cauchy–Schwarz inequality, whose Lorentzian counterpart is �(x)�(y) ≤ x · y, for 
every x, y ∈ K .

• We do not exclude the possibility that some p1/d satisfy the reverse Hlawka inequality in the future cone, when p is 
hyperbolic homogeneous of higher degree d ≥ 2 over Rn . For instance, this is true when p = qm for m ≥ 2 and q is 
a Lorentz quadratic form, because then p1/d = √

q. We leave open the case when p3(x) = σ1(x)σ2(x), where σ j are 
the elementary symmetric polynomials, hyperbolic in the direction 1 = (1, . . . , 1). Because of the formula (n − 1)p3 =
(1 · ∇)(σ 2

2 ), this raises the question whether the Hlawka inequality transfers from a hyperbolic polynomial p to its 
derivative (e · ∇)p in a time-like direction.

Outline of the paper. According to the observations made above, it is enough to consider the cases

• n = 2 and q(x) = x1x2,
• n = 3 and q(A) = det A, with R3 ∼ Sym2(R).

We treat the first case in Section 2. We prove in Section 3 that it implies the second one. We study the equality case in the 
last section.

2. The two-dimensional case

We consider the form q(x) = x1x2, whose future cone is K = (R+)2. The corresponding bilinear form is

x · y = 1

2
(x1 y2 + x2 y1).

Let g denote 
√

q (the opposite of f ). One seeks for the inequality

g(x) + g(y) + g(z) + g(x + y + z) ≤ g(x + y) + g(y + z) + g(z + x), ∀x, y, z ∈ K (5)

Because both sides of (5) are non-negative, and because of the identity

q(x) + q(y) + q(z) + q(x + y + z) = q(x + y) + q(y + z) + q(z + x),

the inequality is equivalent to

(g(x) + g(y) + g(z))g(x + y + z) + g(x)g(y) + g(y)g(z) + g(z)g(x)

≤ g(x + y)g(y + z) + g(y + z)g(z + x) + g(z + x)g(x + y), ∀x, y, z ∈ K . (6)

The latter can be written as

θ(x, y, z) + θ(z, x, y) + θ(y, z, x) ≤ 0,

where

θ(x, y, z) := g(x)g(x + y + z) + g(y)g(z) − g(x + y)g(x + z).

It is therefore enough to prove that

θ(x, y, z) ≤ 0, ∀x, y, z ∈ K . (7)

Because g is non-negative, (7) is equivalent to

(g(x)g(x + y + z) + g(y)g(z))2 ≤ (g(x + y)g(x + z))2,
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that is to

2g(x)g(y)g(z)g(x + y + z) ≤ π(x, y, z) ∀x, y, z ∈ K

:= q(x + y)q(x + z) − q(x)q(x + y + z) − q(y)q(z). (8)

One verifies

π(x, y, z) = 4(x · y)(x · z) + 2(x · y)q(z) + 2(x · z)q(y) − 2(y · z)q(x),

or equivalently

π = x2
1 y2z2 + x2

2 y1z1 + 2(x · y)q(z) + 2(x · z)q(y),

which is obviously non-negative for x, y, z ∈ K . From this, we infer that (8) holds true if and only if

4q(x)q(y)q(z)q(x + y + z) ≤ π(x, y, z)2, ∀x, y, z ∈ K . (9)

The latter inequality turns out to hold true in an even more generality, because of the identity

π(x, y, z)2 − 4q(x)q(y)q(z)q(x + y + z) = Q 2 ≥ 0,

where Q := x1 y2z2(x1 + y1 + z1) − x2 y1z1(x2 + y2 + z2). This follows from the factorization

π = x1 y2z2(x + y + z)1 + x2 y1z1(x + y + z)2.

The correctness of (9) is that of (7), which implies the correctness of (6), which amounts to the truth of (5). This ends 
the proof of the two-dimensional case.

3. The end of the proof

We now turn to the three-dimensional case where K = Sym+
2 and q(A) = det A. Again, we write g = √

q. By a continuity 
argument, we may assume that the three elements, denoted here A, B, C , are positive definite.

Defining A′ = C−1/2 AC−1/2 and B ′ = C−1/2 BC−1/2, we see that (5) amounts to

g(I2 + A′ + B ′) + g(A′) + g(B ′) + 1 ≤ g(I2 + A′) + g(I2 + B ′) + g(A′ + B ′).
In other words, it is enough to consider the case where C = I2.

Let us denote a1 ≤ a2 and b1 ≤ b2 the eigenvalues of A and B , and λ, μ those of A + B . We know λ +μ = T := Tr A +Tr B . 
By Weyl’s inequalities, we have

a1 + b1 ≤ λ,μ ≤ a2 + b2.

We therefore have the constraints s̄ := (a1 + b1)(a2 + b2) ≤ λμ ≤ T 2/4. Let us estimate
√

det(I2 + A + B) − √
det(A + B) = √

1 + T + λμ − √
λμ .

Because the function s �→ √
1 + T + s − √

s is monotone decreasing, its maximum under the conditions s̄ ≤ s ≤ T 2/4 is 
achieved at s̄. We deduce

√
det(I2 + A + B) − √

det(A + B) ≤ √
(1 + a1 + b1)(1 + a2 + b2) − √

(a1 + b1)(a2 + b2).

Since

g(I2 + A) + g(I2 + B) − g(A) − g(B) = √
(1 + a1)(1 + a2) + √

(1 + b1)(1 + b2) − √
a1a2 −

√
b1b2 ,

there remains to prove
√

(1 + a1 + b1)(1 + a2 + b2) + √
a1a2 +

√
b1b2 + 1 ≤ √

(1 + a1)(1 + a2) + √
(1 + b1)(1 + b2)

+ √
(a1 + b1)(a2 + b2) ,

which is a consequence of the two-D case studied in Section 2.

Remark. One might have tried to prove the Theorem in every dimensions by following the same strategy as in the two-
dimensional case, that is by proving that the corresponding function

θ(x, y, z) := g(x)g(x + y + z) + g(y)g(z) − g(x + y)g(x + z)

remains non-positive. This is how the Euclidean Hlawka inequality was proved in [4]. This approach fails here because θ
does not keep a constant sign in dimension ≥ 3.
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4. The equality case

Proposition 4.1. The equality holds in (4) if and only if

• either one vector among x, y or z is 0,
• or x, y and z are collinear.

Proof.

Case n = 2. If equality happens in (4), then we have θ(x, y, z) = θ(y, z, x) = θ(z, x, y) = 0. We may assume that none of the 
vectors be 0.

If x1 = 0, we thus have x2 > 0 and

0 = y1z1 = y1z2(x1 + y1 + z1) = z1 y2(x1 + y1 + z1).

If y1 = z1 = 0, then x, y, z are collinear. If not, there remains 0 = y1z1 = y1z2 = z1 y2, which implies that either y
or z is 0. The same analysis works if any of the five other coordinates vanishes.

Now, if all coordinates are positive, we obtain

x2 + y2 + z2

x1 + y1 + z1
= x1 y2z2

x2 y1z1
= x2 y1z2

x1 y2z1
= x2 y2z1

x1 y1z2
,

which implies

x2

x1
= y2

y1
= z2

z1
.

Therefore the vectors are collinear.
Case n = 3. We first assume C = I2. We keep the notations of Section 3. On the one hand, the equality in (4) implies

√
det(I2 + A + B) − √

det(A + B) = √
(1 + a1 + b1)(1 + a2 + b2) − √

(a1 + b1)(a2 + b2),

which amounts to

λ = a1 + b1, μ = a2 + b2.

This equality case in Weyl’s inequality implies that A and B commute with each other. Going back to the general 
situation where C is positive definite, we obtain that A, B and C are diagonal in the same orthogonal basis. Finally, 
the vectors of eigenvalues must satisfy the two-dimensional equality case, meaning that either one matrix is 02, 
or that A, B and C are collinear.

There remains the sub-case where all of A, B and C are rank-one, say A = aaT, B = bbT and C = ccT. Then 
det A = det B = det C = 0. Denoting u j = (a j, b j, c j), we also have

det(B + C) = (u1 × u2)
2
1, det(C + A) = (u1 × u2)

2
2, det(A + B) = (u1 × u2)

2
3

and

det(A + B + C) = ‖u1 × u2‖2.

The equality in (4) tells us therefore

‖u1 × u2‖ =
3∑

α=1

|(u1 × u2)α |.

This implies that two coordinates of u1 × u2 vanish. This can happen only if either one of the vectors a, b or c is 
0, or if all of them are collinear.

The case where n ≥ 4 reduces to the cases n ≤ 3 by restriction to the subspace spanned by x, y and z. �
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