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Motivated by applications in fluid dynamics, we show elementarily that a nonnegative 
compactly supported Radon measure μ belongs to the negative Sobolev space H−1(R2)

provided that function r �→ μ(B(0, r)) is Hölder continuous. In passing we obtain 
embedding of the space of nondecreasing Hölder continuous functions on R into the 
fractional Sobolev space H1/2(R). We comment on possible generalizations and numerical 
applications.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

En vue d’applications en mécanique des fluides, on démontre qu’une mesure positive de 
Radon à support compact appartient à l’espace négatif de Sobolev H−1(R2) à condition que 
la fonction r �→ μ(B(0, r)) soit hölderienne. En passant, on obtient un plongement d’espace 
des fonctions croissantes hölderiennes sur R dans l’espace de Sobolev fractionnaire 
H1/2(R). On discute des généralisations et des applications numériques.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let u : [0, ∞) × R
2 → R

2 be the velocity of an incompressible flow in 2D, satisfying, for some p : R2 → [0, ∞), the 
incompressible Euler equations,

∂t u + u∇u + ∇p = 0, (1)

div(u) = 0. (2)

Let ω : [0, ∞) ×R
2 → R be the corresponding vorticity, defined by

ω(t, x1, x2) = curl(u) := ∂x1 u2(t, x1, x2) − ∂x2 u1(t, x1, x2).

We will say that u is a nonnegative vortex sheet solution to (1)–(2) if (1)–(2) hold in the sense of distributions, ω(t, ·, ·) ∈
M+(R2) and u(t, ·, ·) ∈ L2

loc(R
2) for every t ≥ 0, and u belongs locally to Lip([0, ∞); H−L) for some L > 0. Here, M+(R2)
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denotes the space of bounded nonnegative Radon measures on R2 (see [7]), L2
loc(R

2) is the space of locally square integrable 
functions on R2 and Hs(R2), s ∈R, is the Sobolev space of all tempered distributions f on R2 such that∫

R2

(1 + |y|2)s| f̂ (y)|2 dy < ∞,

where f̂ denotes the Fourier transform of f . Space H−1(R2) can also be viewed as the space of all continuous functionals 
on the Sobolev space W 1,2(R2) (see, e.g., [1]).

In [5], see also [12], Delort proved a basic existence theorem for nonnegative vortex sheets, which states that for initial 
data u0(x) such that curl(u0) belongs to M+

c (R2) ∩ H−1(R2), where M+
c (R2) is the space of compactly supported measures 

belonging to M+(R2), there exists a nonnegative vortex sheet solution u(t, x) of (1)–(2) such that u(0, ·) = u0. Uniqueness 
of such solutions is an outstanding open problem. Our aim in this paper is to approach this problem by characterizing 
the space M+

c (R2) ∩ H−1(R2) in geometric terms. To this end, we define the radial cumulative distribution function of a 
measure ω ∈M+

c (R2) by

Gω(r) :=
{

ω(B(0, r)) for r > 0,

0 for r ≤ 0,
(3)

where B(0, r) is the closed ball centered at 0 and with radius r. Denote by C0,γ (R) the space of all Hölder continuous 
functions on R (i.e. functions f such that | f (x1) − f (x2)| ≤ K |x1 − x2|γ for some constant K > 0). Our results are the 
following.

Theorem 1.1. Let ω ∈ M+
c (R2) and suppose Gω , given by (3), is Hölder continuous with some exponent 0 < γ ≤ 1. Then ω ∈

H−1(R2).

On the other hand, the mere continuity of Gω is insufficient.

Proposition 1.2. There exists ω ∈M+
c (R2) such that ω /∈ H−1(R2) and Gω , given by (3), is absolutely continuous and bounded.

The reason for considering the radial cumulative distribution functions stems from the fact that spirals of vorticity can 
be conveniently expressed in terms of Gω , see [4]. In particular, for Gω being a monomial, Cieślak and Szumańska obtained 
the following result.

Theorem 1.3. (See Theorem 1.1 from [4].) Let μ be a positive Radon measure supported in a ball B(0, R0) ⊂ R
2 . Assume that there 

exists a positive constant c1 such that for any r ≤ R0

μ(B(0, r)) = c1rα,where α > 0.

Then μ ∈ H−1(R2).

As an application, they showed that the Prandtl spiral, whose both positive and negative branches satisfy μ(B(0, r)) ∝ r2

belongs locally to H−1(R2).
Theorem 1.1 is a generalization of Theorem 1.3 and thus it covers more complex spirals of vorticity. Moreover, it al-

lows simple handling of Cantor-type measures and may be useful for numerical purposes, see Section 4. Finally, as a side 
application of Theorem 1.1, we obtain the following embedding.

Proposition 1.4. Let f : R → R be nondecreasing and Hölder continuous. Then f belongs locally to the fractional Sobolev space 
H1/2(R).

The problem of compact embedding of spaces of measures into H−1(R2) dates back to the original works of DiPerna and 
Majda, who proved certain estimates on the vorticity maximal function, see [6, Theorem 3.1]. In the same vein, various other 
spaces were studied in [11], see also [14]. This regards for example the so-called Morrey spaces of measures. One possible 
strategy to prove Theorem 1.1 is to reinterpret the condition Gω ∈ C0,γ as a condition for ω to belong to a certain Morrey 
space, see Section 3. Nevertheless, our aim in this paper is to prove Theorem 1.1 elementarily, without resorting to the more 
complicated language of Morrey spaces. The proof is based on an explicit characterization of M+

c ∩ H−1, see Lemma 2.1, 
proved originally in [13], and provides more general sufficient conditions for a measure to belong to M+

c ∩ H−1, see 
Lemma 2.2, than the proof involving Morrey spaces. The paper is organized as follows. In Section 2, we prove Theorem 1.1. 
Section 3 is devoted to proofs of Proposition 1.2 and Proposition 1.4 as well as an alternative proof of Theorem 1.1. Finally, 
in Section 4, we discuss two applications.
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2. Proof of Theorem 1.1

Define the positive logarithmic energy of a measure ω ∈M+(R2) by

H+(ω) :=
∫
R2

∫
R2

log+ 1

|x − y| ω(dx)ω(dy), (4)

where log+(x) = max(log(x), 0). The main tool for demonstrating Theorem 1.1 is the following crucial characterization 
proved by Schochet in [13], which builds upon previous ideas of Delort [5], see also [9].

Lemma 2.1. (See Lemma 3.1 in [13].) Let ω be a nonnegative measure of finite mass and compact support, and let u = K ∗ ω =
1

2π

�
(x−y)⊥
|x−y|2 ω(y) be the velocity corresponding to the vorticity ω. Then the following are equivalent:

(i) ω is in H−1 .
(ii) u is in L2

loc.
(iii) H+(ω) < ∞.

To prove Theorem 1.1, it suffices then to show that the right-hand side of (4) is finite. Using inequality log+ 1
|x−y| ≤

log+ 1
||x|−|y|| and the fact that for every Borel function h : [0, ∞) → [0, ∞) equality∫
R2

h(|x|)ω(dx) =
∫

[0,∞)

h(r)dGω(r) (5)

holds (the integral on the right-hand side is understood in the Lebesgue–Stjeltjes sense), we calculate:

H+(ω) =
∫
R2

∫
R2

log+ 1

|x − y| ω(dx)ω(dy) ≤
∫
R2

∫
R2

log+ 1

||x| − |y|| ω(dx)ω(dy)

=
∫
R2

⎡
⎢⎣ ∫

[0,∞)

log+ 1

|rx − |y|| dGω(rx)

⎤
⎥⎦ω(dy) =

∫
[0,∞)

∫
[0,∞)

log+ 1

|rx − ry| dGω(rx)dGω(ry)

=
∫
R

∫
R

log+ 1

|rx − ry| dGω(rx)dGω(ry) = H+(dGω),

where we denote H+(dF ) := ∫
R

∫
R

log+ 1
|x−y| dF (x) dF (y). Theorem 1.1 follows now from the following one-dimensional 

result.

Lemma 2.2. Suppose a bounded continuous nondecreasing F : R → [0, ∞) satisfies:

i) (F (x + ε) − F (x)) logε → 0 as ε → 0 uniformly in x,
ii) (F (x − ε) − F (x)) logε → 0 as ε → 0 uniformly in x,

iii)
∫ 1

0
F (x+y)−F (x)

y dy ≤ C uniformly in x,

iv)
∫ 1

0
F (x)−F (x−y)

y dy ≤ C uniformly in x.

Then

H+(dF ) =
∫
R

⎛
⎝ 1∫

0

1

y
(F (x + y) − F (x − y))dy

⎞
⎠ dF (x)

and in particular, H+(dF ) < +∞.

Indeed, F ∈ C0,γ satisfies i)–iv) since |F (x ± ε) − F (x)| log(ε) ≤ Kεγ log(ε) → 0 as ε → 0 and 
∫ 1

0
|F (x±y)−F (x)|

y dy ≤
K

∫ 1
0 yγ −1 dy = K/γ . This proves Theorem 1.1. �

Proof of Lemma 2.2. Using the properties of Lebesgue–Stieltjes integrals (see [2]), we obtain:
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H+(dF ) =
∫
R

∫
R

log+ 1

|x − y| dF (x)dF (y) =
∫
R

⎡
⎣ x+1∫

x−1

log
1

|x − y| dF (y)

⎤
⎦ dF (x)

=
∫
R

⎡
⎣ 1∫

−1

log
1

|y| dF (x + y)

⎤
⎦dF (x) =

∫
R

⎡
⎣ 1∫

0

log

(
1

y

)
d(F (x + y) − F (x − y))

⎤
⎦ dF (x)

=
∫
R

1∫
0

log

(
1

y

)
d(F (x + y) − F (x))dF (x) +

∫
R

1∫
0

log

(
1

y

)
d(F (x) − F (x − y))dF (x)

=
∫
R

lim
ε→0

⎡
⎣ 1∫

ε

log

(
1

y

)
d(F (x + y) − F (x))

⎤
⎦ dF (x) +

∫
R

lim
ε→0

⎡
⎣ 1∫

ε

log

(
1

y

)
d(F (x) − F (x − y))

⎤
⎦ dF (x)

=
∫
R

lim
ε→0

⎡
⎣[

log

(
1

y

)
(F (x + y) − F (x))

]1

ε

+
1∫

ε

1

y
(F (x + y) − F (x))dy

⎤
⎦ dF (x)

+
∫
R

lim
ε→0

⎡
⎣[

log

(
1

y

)
(F (x) − F (x − y))

]1

ε

+
1∫

ε

1

y
(F (x) − F (x − y))dy

⎤
⎦ dF (x)

=
∫
R

⎛
⎝ 1∫

0

1

y
(F (x + y) − F (x) + F (x) − F (x − y))dy

⎞
⎠ dF (x) ≤ 2C

∫
R

dF (x),

where in the last equality we used the Lebesgue-dominated convergence theorem and the fact that measure dF is 
bounded. �
Remark 1. Proofs of Lemma 2.2 and Theorem 1.1 show that if F satisfies |F (x + y) − F (x)| ≤ K |y|γ , then

H+(dF ) ≤ 2(K/γ )ω(R2).

Remark 2. Conditions i)–iv) from Lemma 2.2 encompass a larger class of functions than functions that are Hölder continu-
ous. For instance, it suffices to assume that |F (x + y) − F (x)| ≤ 1/| log(|y|)|β for |y| ≤ ε, x ∈ R and fixed β > 1 and ε > 0. 
Such a regularity can be interpreted in terms of Morrey spaces M(1;α) studied in [11], see also [6, Theorem 3.1]. A result 
going beyond the results from [11] can be obtained by assuming, e.g.,

|F (x + y) − F (x)| ≤ 1/| log(|y|)|(| log(| log(|y|)|)|)β
for |y| ≤ ε, x ∈R and fixed β > 1 and ε > 0.

3. Proofs of Proposition 1.2, Proposition 1.4 and an alternative proof of Theorem 1.1

Proof of Proposition 1.2. Take ω = f (x1)dx1δ0(dx2) and suppose f has the form

f (x) =
∞∑

n=1

hn1[an,an+dn](x),

where an ∈ R, hn > 1, 0 < dn ≤ 1, an + dn ≤ an+1 for every n = 1, 2, . . . , and 1A(x) is equal 1 if x ∈ A and 0 otherwise. 
Observe that

H+(h1[a,a+d](x1)dx1 δ0(dx2)) ≥
a+d∫
a

a+d∫
a

log+ 1

|x − y|h2 dx dy ≥ h2d2 log(1/d)

and hence

H+(ω) ≥
∞∑

h2
n d2

n log(1/dn). (6)

n=1
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Take dn = exp(−22n) and hn = 1/(2ndn). Then, on the one hand, ‖ f ‖L1 = ∑∞
n=1 hndn = 1. On the other hand, however, by (6):

H+(ω) ≥
∞∑

n=1

2−2n log(1/dn) = +∞.

To conclude the proof, we observe that Gω for ω defined above is absolutely continuous. �
Remark 3. It can be shown that the function f constructed in the proof of Proposition 1.2 belongs in fact to the Zygmund 
class L(log L)γ , for every γ < 1/2. Note that for γ ≥ 1/2, space L(log L)γ can be embedded into H−1, see [3].

Proof of Proposition 1.4. The space of distributions belonging to H−1(R2), which are supported on the line {(x1, 0) : x1 ∈ R}
can be identified with the fractional Sobolev space H−1/2(R). This follows by the fact that the trace operator T : W 1,2(R2) →
H1/2(R) is bounded and has a bounded right inverse, see [15, Section 16], and the identification operator R : H−1(R2) →
H−1/2(R) is defined by requiring identity R(S)(T (φ)) = S(φ) to hold for every test function φ ∈ W 1,2(R2).

Let now f be Hölder continuous and nondecreasing on R and suppose without loss of generality that f is constant for 
x ≤ 0 and x ≥ 1. Then measure ω := d f (x1) δ0(dx2) belongs to H−1(R2) by Theorem 1.1. Since ω is identified with d f (x1), 
we obtain that d f ∈ H−1/2(R). Consequently, f ∈ H1/2(R). �
Alternative proof of Theorem 1.1 using Morrey spaces. A (signed) measure μ on R2 belongs to the Morrey space M̃ p if

‖μ‖M̃ p := sup
R>0

R−2/p′
sup
x∈R2

|μ|(B(x, R)) < ∞,

where p′ satisfies 1/p + 1/p′ = 1. Theorem 4.3 from [11] asserts that for bounded � ⊂ R
2 the space M̃ p(�) is compactly 

embedded in H−1(�) for every p > 1. Let now ω ∈M+
c (R2) and suppose Gω , given by (3), is Hölder continuous with some 

exponent 0 < γ ≤ 1. Then, for |x| > r, we have:

ω(B(x, r)) ≤ Gω(|x| + r) − Gω(|x| − r) ≤ 2Krγ

due to inclusion B(x, r) ⊂ B(0, |x| + r)\B(0, |x| − r). For |x| ≤ r, we obtain similarly:

ω(B(x, r)) ≤ Gω(2r) = Gω(2r) − Gω(0) ≤ 2Krγ .

Thus, ω ∈ M̃ p for p satisfying 2/p′ = γ . Consequently, p = 2/(2 − γ ) > 1 and hence ω ∈ H−1(R2). �
4. Applications

Proposition 4.1. A nonnegative Radon measure belonging to H−1(R2) may be supported on a set of arbitrary small positive Hausdorff 
dimension.

Sketch of proof. Consider a Cantor set C K ⊂ [0, 1] obtained by removing in every step of the construction the middle 
(K − 2)/K portion of every interval (note that for K = 3 we obtain the standard ternary Cantor set). Let �K (r) be the 
corresponding Cantor function and consider the measure

ωK = d�K (x1) δ0(dx2).

Then ωK is supported on the closed set C K of dimension α = log(2)/ log(K ). Moreover, GωK (r) = �K (r) is Hölder continuous 
with exponent α = log(2)/ log(K ), see, e.g., [8]. By Theorem 1.1, ωK ∈ H−1(R2). �

Adapting the above construction, we can prove that a measure belonging to H−1(R2) may be supported on a set of 
Hausdorff dimension 0. We postpone the rigorous proof to further work and close the paper with a brief discussion of 
numerical applications of Theorem 1.1.

Remark 4 (Numerical applications). From the point of view of proving the convergence of numerical schemes, it is important 
to know that ωn , a sequence of approximations of a compactly supported measure

ω ∈ M+
c (R2) ∩ H−1(R2),

is such that H+(ωn) remains bounded uniformly in n (see, e.g., [13] or [10]). Let, for instance, ω be the positive branch of 
the Kaden spiral (see [4]) at some point in time. Then function r �→ ω(B(0, r)) is Hölder continuous with exponent γ = 1/2
(see [4]) and hence belongs locally to H−1(R2). Let ωn be a smooth approximation of ω, e.g. a vortex blob approximation, 
see [10]. To prove that H+(ωn) is bounded uniformly with respect to n it suffices, by Remark 1, to show that functions

r �→ ωn(B(0, r))
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are uniformly Hölder continuous with constant K and exponent γ independent of n. Whether this is the case depends on 
a particular form of vortex blob approximation. The goal is then to construct an approximation that satisfies the uniform 
Hölder condition. This, however, is relatively simple, since r �→ ω(B(0, r)) is Hölder continuous. For an alternative approach, 
we refer the reader, e.g., to [9, Theorem 3.1].
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