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For a family of compact Riemann surfaces, we study the asymptotic behaviors of the 
relative Bergman kernel metric near the boundaries of the moduli spaces. We have shown 
that the relative Bergman kernel metric on a family of elliptic curves has hyperbolic growth 
at the node. The proof relies largely on the elliptic function theory.
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r é s u m é

Pour une famille de surfaces de Riemann compactes, nous étudions les comportements 
asymptotiques de la métrique du noyau relatif de Bergman à proximité des frontières des 
espaces de modules. Nous montrons que la métrique du noyau relatif de Bergman sur une 
famille de courbes elliptiques a une croissance hyperbolique au point singulier. La preuve 
est principalement basée sur la théorie des fonctions elliptiques.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

On a connected complex manifold, the Bergman kernel is a reproducing kernel of the space of L2 holomorphic top-forms. 
It is a canonical volume form determined by the complex structure and plays big roles in many deep results in complex 
geometry, such as the so-called partial C0 estimates by Tian [11] and Donaldson & Sun [6]. As the complex structure 
changes, the variation of the Bergman kernels was initially studied by Maitani & Yamaguchi [9], who obtained the following 
theorem.

Theorem 1.1. Let � be a pseudoconvex domain in Cz × Ct with a smooth boundary. Let Bt(z) be the Bergman kernel function of 
�t := � ∩ (Cz × {t}). Then log Bt(z) is a plurisubharmonic function on �.
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Later, Berndtsson [2] generalized this result to the higher dimensional cases.

Theorem 1.2. Let D be a pseudoconvex domain in Cn
z × C

k
t , and let � be a plurisubharmonic function on D. For each t, set Dt :=

D ∩(Cn
z ×{t}) and �t := �|Dt . Let Bt(z) be the Bergman kernel of the Hilbert space A2(Dt , �t) := { f ∈O(Dt)| 

∫
Dt

e−�t | f |2 < +∞}. 
Then log Bt(z) is a plurisubharmonic function on D.

After that, the cases of arbitrary dimensional Stein manifolds and complex projective algebraic manifolds were decisively 
solved by Berndtsson [3], Tsuji [12] and Berndtsson & Pǎun [5]. Recently it has been shown by Guan & Zhou [8] and 
Berndtsson & Lempert [4] that this log-plurisubharmonic variation of Bergman kernels is intimately related to the extension 
of holomorphic functions with (optimal) L2 estimates, which is originally due to Ohsawa & Takegoshi [10].

For a compact manifold X , let L be a positive line bundle equipped with a Hermitian metric h and let {s1, . . . , sN } be an 
orthonormal basis of H0(X, L). Then the Bergman kernel for L over X is defined as

B :=
N∑

j=1

|si |2h. (1)

As a special case of a holomorphic family {Xλ} of compact Riemann surfaces, the Bergman kernel Bλ for the canonical 
bundle can be written as Bλ = kλ(z)dz ∧ dz̄, under some local coordinate z. Then the above log-plurisubharmonic variation 
results guarantee the following semi-positivity:

√−1 ∂λ∂̄λ log kλ(z) ≥ 0. (2)

Still, the asymptotic behavior of the left-hand side of (2) is not yet fully understood in the limiting case, i.e., when λ
tends to the boundary of the moduli space. In this paper, we compute its asymptotic behavior via elliptic functions, as a 
Legendre family of elliptic curves degenerate. The main result is as follows.

Theorem 1.3. Let Bλ denote the Bergman kernel of the elliptic curve Xλ := {
y2 = x(x − 1)(x − λ)

}
, λ ∈C \{0,1}. In local coordinate z, 

write Bλ = kλ(z) dz ∧ dz̄. Then as λ → 0, it has

(i) log kλ(z) ∼ − log(− log |λ|),
(ii)

√−1 ∂λ∂̄λ log kλ(z) ∼
√−1 dλ ∧ dλ̄

4|λ|2(log |λ|)2
.

Here g(λ) ∼ h(λ) means that the quotient of two functions g(λ) and h(λ) tends to 1 as λ → 0. Note that when λ → 0, Xλ

degenerates to a singular curve X0 := {y2 = x2(x −1)}. This theorem demonstrates that the Levi form of the relative Bergman 
kernel metric has hyperbolic growth near the node. In comparison, the Poincaré hyperbolic metric on the punctured unit 
disk has exactly the same asymptotic behavior near the origin. Two key ingredients involved here are the Weierstrass-℘
function’s coordinate parameterization and the elliptic modular lambda function’s Taylor expansion.

2. Proof of the main theorem

Proof. From [1, p. 281], we know that the elliptic modular lambda function λ = λ(τ ) effects a one-to-one conformal map-
ping of the region � := {τ ∈ C| 0 < Re τ < 1, |τ − 1

2 | > 1
2 , Imτ > 0} onto the upper half plane H. Also, this mapping extends 

continuously to the boundary in such a way that τ = ∞ corresponds to λ = 0. Let �′ be the reflection of � with respect 
to the imaginary axis, then � and �′ together correspond to C \ {0,1}. In other words, Imτ → +∞ corresponds to λ → 0. 
Since λ is conformal, so is its inverse function τ = λ−1 : C \ {0,1} → � ∪ �′ . Thus, for any fixed λ ∈ C \ {0,1}, there exists 
a complex number τ ∈ � ∪ �′ ⊂ H. Using 1 and this τ (Imτ > 0) as a lattice, one can get a complex torus, denoted by 
Xτ := C/ (Z+ τZ).

For z ∈ Xτ , the Weierstrass-℘ function with respect to the lattice (1, τ ) is defined to be

℘(z) := 1

z2
+

∑
ω =0

(
1

(z − ω)2
− 1

ω2

)
,

where the sum ranges over all ω = n1 + n2τ except 0 (n1, n2 ∈ Z).
Letting e1 := ℘

( 1
2

)
, e2 := ℘

(
τ
2

)
, e3 := ℘

( 1+τ
2

)
, then according to [1, p. 277], we know that the Weierstrass-℘ function 

satisfies:

℘′(z)2 = 4 (℘ (z) − e1) (℘ (z) − e2) (℘ (z) − e3) .

Now change the variables, by setting:
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⎧⎨
⎩

x = ℘(z)−e2
e1−e2

y = ℘′(z)

2(e1−e2)
3
2

.

Then it is easy to check that

y2 = x (x − 1)

(
x − e3 − e2

e1 − e2

)
.

Actually, λ(τ ) := e3−e2
e1−e2

is just the definition of the elliptic modular lambda function. Another standard characterization 
of the elliptic modular lambda function λ(τ ) is using q := exp(π iτ ) (q → 0 as Imτ → +∞) to write it as

λ(τ ) = 16 q − 128 q2 + 704 q3 − 3072 q4 + 11 488 q5 − . . . = 16 q − 128 q2 + O(q3). (3)

Therefore, the complex torus Xτ =C/
(
Z + τZ

)
can be identified with an elliptic curve

Xλ :=
{

y2 = x(x − 1)(x − λ)
}

.

So later we will not distinguish Xτ and Xλ and their Bergman kernels. By definition (1), the Bergman kernel Bτ of 
the canonical bundle on Xτ can be simply written as Bτ = 1

Im τ dz ∧ dz̄ under the local coordinate z. This means that 
kλ(z) = 1

Im τ . Now, we are able to analyze the asymptotic behaviors of Bτ as Imτ → +∞ (or equivalently the asymptotic 
behaviors of Bλ as λ → 0):

Step 1: We check the conclusion (i).
From q := exp(π iτ ), it follows that |q| = exp(−π · Im(τ )) and also Im τ = log |q|

−π . Therefore, it has

log kλ(z)

= log
1

Imτ
= − log Imτ

= − log(− log |q|
π

).

According to (3) as Imτ → +∞ (q → 0), it has |λ| = |16q − 128q2 + O(q3)| ∼ 16|q| → 0. So, we get as λ → 0 that

log kλ(z) ∼ − log(− log |λ|).
Step 2: To check the conclusion (ii), we need to compute 

√−1∂λ∂̄λ log kλ(z).
Taking the partial derivatives, one knows that

√−1∂λ∂̄λ log kλ(z)

= √−1∂λ∂̄λ log
1

Imτ

= −√−1∂λ∂̄λ log Imτ

= −√−1∂λ∂̄λ log

(
τ − τ̄

2
√−1

)

= −√−1∂λ

(
2
√−1

τ − τ̄

∂

∂λ̄

(
τ − τ̄

2
√−1

))
∧ dλ̄.

Since τ being holomorphic implies that ∂τ
∂λ̄

= 0, it has

√−1∂λ∂̄λ log kλ(z)

= −√−1∂λ

(
2
√−1

τ − τ̄

∂

∂λ̄

( −τ̄

2
√−1

))
∧ dλ̄

= √−1∂λ

(
τ̄ ′

τ − τ̄

)
∧ dλ̄

= √−1
∂τ̄ ′
∂λ

· (τ − τ̄ ) − τ̄ ′ ∂(τ−τ̄ )
∂λ

2
dλ ∧ dλ̄
(τ − τ̄ )
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= √−1
0 · (τ − τ̄ ) − τ̄ ′ ∂(τ )

∂λ

(τ − τ̄ )2
dλ ∧ dλ̄

= √−1
−|τ ′|2

(τ − τ̄ )2
dλ ∧ dλ̄,

where τ ′ = τ ′(λ) is the derivative of τ with respect to λ. Since (τ − τ̄ )2 = −4(Imτ )2 ≤ 0, one has:

√−1∂λ∂̄λ log kλ(z) = √−1

( |τ ′|
2 · Imτ

)2

dλ ∧ dλ̄ ≥ 0.

Thus, the semi-positivity as stated in (2) can be proved. By the Inverse Function Theorem, we know that τ ′(b) =
(λ−1)

′
(b) = 1

λ′(a)
holds for any b = λ(a), where λ′ is the derivative of λ with respect to τ . Therefore, one has:

√−1∂λ∂̄λ log kλ = √−1

(
1

2 · Imτ · |λ′(τ )|
)2

dλ ∧ dλ̄. (4)

From (3) again, one can compute that λ′(τ ) = ∂λ
∂q · ∂q

∂τ = (16 − 256q + O(q2)) · q · √−1π . As λ → 0 (or equivalently 
Imτ → +∞ or q → 0), it follows that

|λ′(τ )| ∼ 16π |q| ∼ π |λ|.
Substituting it into (4), we will have:

√−1∂λ∂̄λ log kλ(z)

= √−1

(
1

2 · log |q|
−π · |λ′(τ )|

)2

dλ ∧ dλ̄

∼ √−1

(
1

2 · log |q|
−π · π |λ|

)2

dλ ∧ dλ̄

= √−1

(
1

−2|λ| · log |q|
)2

dλ ∧ dλ̄

∼ √−1

(
1

−2|λ| · log |λ|
)2

dλ ∧ dλ̄

=
√−1 dλ ∧ dλ̄

4|λ|2(log |λ|)2
. �

3. Further remarks

On the one hand, the above computational proof seems difficult to be generalized. On the other hand, for compact 
Riemann surfaces with higher genus, there might be a non-computational approach working for this problem. Based on the 
result of this paper, the author continues the study of the relative Bergman kernel metric for a family of elliptic curves and 
obtains explicitly a two-term asymptotic expansion formula in the limiting case. It turns out that the second term in the 
asymptotic expansion contains more “logarithmic” information. For the details, please see [7].
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[5] B. Berndtsson, M. Pǎun, Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math. J. 145 (2) (2008) 341–378.

http://refhub.elsevier.com/S1631-073X(15)00118-1/bib31s1
http://refhub.elsevier.com/S1631-073X(15)00118-1/bib32s1
http://refhub.elsevier.com/S1631-073X(15)00118-1/bib32s1
http://refhub.elsevier.com/S1631-073X(15)00118-1/bib33s1
http://refhub.elsevier.com/S1631-073X(15)00118-1/bib34s1
http://refhub.elsevier.com/S1631-073X(15)00118-1/bib35s1


R.X. Dong / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 611–615 615
[6] S.K. Donaldson, S. Sun, Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math. 213 (1) (2014) 63–106.
[7] R.X. Dong, Boundary asymptotics of the relative Bergman kernel metric for elliptic curves II, submitted for publication, 2015.
[8] Q.-A. Guan, X.-Y. Zhou, A solution of an L2 extension problem with optimal estimate and applications, Ann. Math. (2) 181 (3) (2015) 1139–1208.
[9] F. Maitani, H. Yamaguchi, Variation of Bergman metrics on Riemann surfaces, Math. Ann. 330 (3) (2004) 477–489.

[10] T. Ohsawa, K. Takegoshi, On the extension of L2 holomorphic functions, Math. Z. 195 (1987) 197–204.
[11] G. Tian, On Calabi conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1) (1990) 101–172.
[12] H. Tsuji, Curvature semipositivity of relative pluricanonical systems, preprint, arXiv:math/0703729, 2007.

http://refhub.elsevier.com/S1631-073X(15)00118-1/bib36s1
http://refhub.elsevier.com/S1631-073X(15)00118-1/bib38s1
http://refhub.elsevier.com/S1631-073X(15)00118-1/bib39s1
http://refhub.elsevier.com/S1631-073X(15)00118-1/bib3130s1
http://refhub.elsevier.com/S1631-073X(15)00118-1/bib3131s1
http://refhub.elsevier.com/S1631-073X(15)00118-1/bib3132s1

	Boundary asymptotics of the relative Bergman kernel metric for elliptic curves
	1 Introduction
	2 Proof of the main theorem
	3 Further remarks
	Acknowledgements
	References


