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r é s u m é

Dans cette Note, nous donnons des minorants et majorants des premières valeurs propres 
de l’opérateur bi-harmonique sur une variété riemannienne, compacte, connexe, en 
utilisant respectivement les formules de Reilly et de Bochner.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let � be an n-dimensional compact connected Riemannian manifold with smooth boundary ∂�. The following problems 
are called the buckling problem:{

�2u = −��u in �,

u|∂� = ∂u
∂�n |∂� = 0,

(1.1)

and the clamped plate problem:{
�2u = �u in �,

u|∂� = ∂u
∂�n |∂� = 0,

(1.2)

respectively, because (1.1) can describe the critical buckling load of a clamped plate subjected to a uniform compressive force 
around its boundary, and (1.2) can describe the characteristic vibrations of a clamped plate, where �2 is the bi-harmonic 
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operator and �n denotes the inner unit normal vector field of the boundary ∂�. The spectra of (1.1) and (1.2) are real and 
purely discrete:

0 < �1 ≤ �2 ≤ · · · ≤ �k ≤ · · · ↑ +∞, 0 < �1 ≤ �2 ≤ · · · ≤ �k ≤ · · · ↑ +∞.

For eigenvalues of problems (1.1) and (1.2) on � ⊂ R
n , by using the results of Li and Yau [5] and the variational charac-

terization for eigenvalues, Levine and Protter [4] obtained the lower bound estimations
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where ωn denotes the volume of the unit ball in Rn . Recently, in [2], Chen, Cheng, Wang and Xia have investigated the first 
eigenvalues of (1.1) and (1.2) under the assumption that the Ricci curvature of � is bounded from below by (n − 1). They 
got that �1 > n, �1 > nλ1, where λ1 denotes the first eigenvalue of the Dirichlet eigenvalue problem.

One can use the Faber–Krahn inequalities of ν-Euclidean type (cf. [1], p. 166) to estimate the lower bounds of the first 
eigenvalues for eigenvalue problems on manifolds. For example, for the Dirichlet eigenvalue problem on manifold, in [1], 
Chavel got λ1(�) ≥ α2 V (�)− 2

ν , where α = (ν−2)(�)
2(ν−1)

Jν(�) and ν > 1 is a positive constant. This wonderful result inspires us 
to investigate the Faber–Krahn inequalities of ν-Euclidean type for bi-harmonic operators on manifolds.

This paper is organized as follows. In Section 2, we will estimate the lower bounds of the first eigenvalues for the 
bi-harmonic operator on manifolds M , that is, using the Federer–Fleming theorem and the Reilly formula to investigate the 
analytic Faber–Krahn inequalities of ν-Euclidean type when ν ≥ n = dim(M). In Section 3, we will use the Bochner formula 
to estimate the upper bounds of the first eigenvalues for the bi-harmonic operator.

2. The lower bounds of the first eigenvalues

In this section, our main goal is to estimate the lower bounds of the first eigenvalues for problems (1.1) and (1.2) by the 
analytic Faber–Krahn inequalities of ν-Euclidean type when ν ≥ n = dim(M). Firstly, we will recall the Reilly formula and 
some preliminary knowledge of the isoperimetric constant.

Lemma 2.1 (Reilly’s formula). (See [7].) Let � be an n-dimensional compact connected Riemannian manifold with smooth boundary 
∂�. Given f ∈ C∞(�̄), then∫

�

[(� f )2 − |∇2 f |2 − Ric(∇ f ,∇ f )]dV =
∫
∂�

[−2(�̄ f )〈∇ f , �n〉 + (n − 1)H〈∇ f , �n〉2 + σ(∇̄ f , ∇̄ f )]dA, (2.1)

where � f , ∇ f and ∇2 f are the Laplacian, gradient and Hessian of f , Ric the Ricci curvature of �, �̄ f and ∇̄ f the Laplacian and the 
gradient of f in ∂�, and σ and H the second fundamental form and the mean curvature of ∂� with respect to the inner unit normal 
vector field �n on ∂�.

We recall the following variational characterization for the first eigenvalues of the buckling problem and the clamped 
plate problem:

�1(�) = min
f ∈H2

0(�)

f �≡0

∫
�
(� f )2 dV∫

�
|∇ f |2 dV

, (2.2)

and

�1(�) = min
f ∈H2

0(�)

f �≡0

∫
�
(� f )2 dV∫
�

f 2 dV
. (2.3)

Definition 2.2. (See [1].) Let M be an n-dimensional Riemannian manifold with n ≥ 2. For each ν > 1, the ν-isoperimetric 
constant of M , Jν(M), is defined to be the infimum:

Jν(M) = inf
�

A(∂�)

V (�)1− 1
ν

,

where � varies over open submanifolds of M possessing compact closure and C∞ boundary.

Remark 1. As stated in [1], the fact that Jν(M) > 0 is only possible for n ≤ ν ≤ ∞. Indeed, let ν < n, and consider a small 
geodesic ball B(x; ε), with center x ∈ M and radius ε > 0, for the isoperimetric quotient of B(x; ε),

lim
ε→0

A(∂�)

1− 1
ν

∼ lim
ε→0

const.ε
n
ν −1 = 0.
V (�)
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So it seems at first glance that one only has a discussion of isoperimetric constants for ν ≥ n = dim M .

Definition 2.3. (See [1].) Let M be an n-dimensional Riemannian manifold, n ≥ 2. For each ν > 1, the Sobolev constant of M , 
Sν(M), is defined to be the infimum

Sν(M) = inf
u

‖∇u‖1

‖u‖ ν
ν−1

,

where u ∈ C∞
0 (M).

Lemma 2.4 (The Federer–Fleming Theorem). The isoperimetric and Sobolev constants are equal, that is

Jν(M) = Sν(M). (2.4)

The detailed proof of the Federer–Fleming Theorem can be found in [1,3,6]. This elegant result was first proven indepen-
dently in [3] by Federer and Fleming, and in [6] by Maz’ya in 1960.

Theorem 2.5. Let � be an n-dimensional compact connected Riemannian manifold with smooth boundary ∂�. Assume that the Ricci 
curvature of � is bounded from below by a constant C , and the isoperimetric constant Jν(�) of � is positive for some ν > 1. Let 
�1(�) and �1(�) be the first eigenvalues of the problems (1.1) and (1.2). Then

�1(�) ≥ 1

4

(
Jν(�)

V (�)
1
ν

)2

+ C, (2.5)

and

�1(�) ≥
⎡
⎣1

4

(
Jν(�)

V (�)
1
ν

)2

+ C

⎤
⎦λ1(�), (2.6)

where λ1(�) denotes the first eigenvalue of the Dirichlet eigenvalue problem.

Proof. For any u ∈ H2
0(�), without loss of generality, we choose the normal coordinate (U ; x1, · · · , xn) for any point P ∈ �. 

By a direct calculation, we can get

|∇|∇u||2(P ) =
n∑

q=1

[
(
∑n

i=1 uiuiq)
2∑n

i=1 u2
i

]
, (2.7)

where u j = ∂u
∂x j , u jp = ∂2u

∂x j∂xp . From the Cauchy–Schwarz inequality, it follows that
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uiuiq
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u2
i

)( n∑
i=1

u2
iq
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u2
i
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u2
iq

)
. (2.8)

Combining (2.7) and (2.8) yields

|∇|∇u||2(P ) ≤
n∑

i,q=1

u2
iq = |∇2u|2(P ),

this implies

|∇|∇u||2 ≤
n∑

i,q=1

u2
iq = |∇2u|2 (2.9)

on � for any u ∈ H2
0(�).

For any u ∈ C∞
0 (�), let the test function f (u) = |∇u|2, then, we first have by the Hölder inequality that

∫
| f |dV ≤
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⎩
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1
ν . (2.10)
� � � �



738 L. Zhang / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 735–740
According to the Federer–Fleming Theorem (2.4), we derive

Jν(�)
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which together with (2.10) gives us∫
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| f |dV ≤ V (�)
1
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From the Cauchy–Schwarz inequality, it is obvious that
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Combining (2.11) and (2.12) yields

∫
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since C∞
0 (�) is dense in H2

0(�), the above relation holds also for any u ∈ H2
0(�), which implies∫
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thus, by (2.9), we get∫
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From the Reilly formula (2.1) and u|∂� = ∂u
∂�n |∂� = 0, we have∫

�

[
(�u)2 − |∇2u|2 − Ric(∇u,∇u)

]
dV = 0,

this equality and the Ricci curvature of � is bounded from below by a constant C imply∫
�

|∇2u|2 dV =
∫
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∫
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∫
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it follows from this inequality and (2.13) that∫
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From the Poincaré inequality and the fact that u is non-zero and u|∂� = 0, we can obtain∫
�

|∇u|2 dV∫
�

u2 dV
≥ λ1(�), (2.16)

where the equality holds if and only if u is the first eigenfunction of the Dirichlet eigenvalue problem. Then, it follows 
from (2.2), (2.3), (2.14), (2.15) and (2.16) that

�1(�) = min
u∈H2
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and

�1(�) = min
f ∈H2

0(�)

f �≡0

∫
�
(�u)2 dV∫
�

u2 dV
≥

⎡
⎣1

4

(
Jν(�)

V (�)
1
ν

)2

+ C

⎤
⎦λ1(�).

We complete the proof. �
Similarly with the analytic Faber–Krahn inequality of ν-Euclidean type for the Dirichlet eigenvalue problem on manifold 

(cf. [1, p. 166]), we refer to the inequalities (2.5) and (2.6) as the analytic Faber–Krahn inequalities of ν-Euclidean type.
As natural applications of the above results, concrete lower bounds of the first eigenvalues of the above problems on 

unit ball and unit sphere will be obtained.

Example 2.1. Let � ⊂R
n be a unit ball, that is, � = {(x1, x2, · · · , xn) ∈R

n | ∑n
i=1 x2

i ≤ 1}. It is well known that Jn(�) = nω
1
n
n

for any connected domain � ⊂ Rn . Then from (2.5) and (2.6), we can get:

�1(�) ≥ n2

4
, �1(�) ≥ n4

16
.

Example 2.2. Let Sn be a unit sphere with sectional curvature 1, and � ⊆ Sn (small enough) be a relatively compact domain 
with smooth boundary ∂�. Then the Ricci curvature of Sn is n − 1. From [8, Theorem 1.4], we know that for any connected 
domain � ⊂ Sn, n = 2, 3, 4, 5,

A(∂�)

V (�)1− 1
n

≥ n ω
1
n
n
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1 − τ V (�)

2
n

) 1
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n )

1
n . Then from (2.5) and (2.6), we 

have:
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[
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)] 2
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{
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[
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}
λ1.

3. The upper bounds of the first eigenvalues

In this section, we will estimate the upper bounds of the first eigenvalues for problems (1.1) and (1.2). Firstly, we recall 
the Bochner–Weitzenböck formula for later use.

Lemma 3.1 (Bochner–Weitzenböck formula). Let � be an n-dimensional complete Riemannian manifold. Given any u ∈ C∞(�), then

1

2
(�|∇u|2) = 〈∇u,∇(�u)〉 + |∇2u|2 + Ric(∇u,∇u),

where �u, ∇u and ∇2u are the Laplacian, gradient and Hessian of u, Ric the Ricci curvature of �.

Theorem 3.2. Let � be an n-dimensional compact connected Riemannian manifold with smooth boundary ∂�. Assume that the 
Ricci curvature of � is bounded from below by a constant C . Let �1(�) and �1(�) be the first eigenvalues of the problems (1.1)
and (1.2). If the first eigenfunction corresponding to the first eigenvalue λ1(�) of the Dirichlet eigenvalue problem on domain �
satisfies u1 ∈ H2

0(�). Then

�1(�) < n(λ1(�) − C), �1(�) < nλ1(�)(λ1(�) − C).

Proof. It follows from u|∂� = ∂u
∂�n |∂� = 0 that (∇u)|∂� = 0, then, by the divergence theorem, we have:∫

�

�|∇u|2 dV = 2
∫
∂�

|∇u|〈∇|∇u|, �n〉dA = 0. (3.1)

From the Bochner–Weitzenböck formula and (3.1), we have:

λ1

∫
|∇u1|2 dV =

∫
[|∇2u1|2 + Ric(∇u1,∇u1)]dV . (3.2)
� �
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By the Schwarz inequality, we get

|∇2u1|2 ≥ 1

n
(�u1)

2, (3.3)

with equality holding if and only if

∇2u1 = �u1

n
〈, 〉.

From (3.2), (3.3) and the Ricci curvature is bounded from below by a constant C , we have

(λ1 − C)

∫
�

|∇u1|2 dV ≥ 1

n

∫
�

(�u1)
2 dV ,

which together with (2.3) and (2.4) implies

�1(�) ≤
∫
�
(�u1)

2 dV∫
�

|∇u1|2 dV
≤ n(λ1 − C), �1(�) ≤

∫
�
(�u1)

2 dV∫
�
(u1)2 dV

≤ nλ1(λ1 − C).

Let us show that neither �1(�) = n(λ1 − C) nor �1(�) = nλ1(λ1 − C) will hold. If �1(�) = n(λ1 − C), we have

−�1(�)�u1 = �2u1,

then �1 = λ1; this is a contradiction, since �1 > λ1.
If �1(�) = nλ1(λ1 − C), we must have:

|∇2u1|2 = 1

n
(�u1)

2, Ric(∇u,∇u) = C |∇u|2.
It is obvious that

nλ1(λ1 − C)u1 = �1u1 = �2u1 = λ2
1u1,

which implies

λ1 = n

n − 1
C .

Using a similar argument as that in [2], we can prove that this is a contradiction. The details are as follows. By the Bochner–
Weitzenböck formula, we have:

1

2
�

(
|∇u|2 + 1

n − 1
Cu2

)

= 〈∇(�u),∇u〉 + Ric(∇u,∇u) + (�u)2

n
+ 1

n − 1
C |∇u|2 + 1

n − 1
Cu�u

= − n

n − 1
C |∇u|2 + C |∇u|2 + n

(n − 1)2
C2u2 + 1

n − 1
C |∇u|2 − n

(n − 1)2
C2u2

= 0.

Since |∇u|2 + 1
n−1 Cu2 is continuous on � and 

(
|∇u|2 + 1

n−1 Cu2
)

|∂� = 0, we conclude from the maximum principle that 

|∇u|2 + 1
n−1 Cu2 = 0 on M; this is a contradiction. By the above discussion, we get:

�1(�) < n(λ1(�) − C), �1(�) < nλ1(�)(λ1(�) − C). �
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