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r é s u m é

Nous montrons un théorème de stabilité pour les familles de variétés holomorphiquement 
parallélisables, dans la catégorie des variétés hermitiennes.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

By a classical theorem by K. Kodaira and D.C. Spencer, [13, Theorem 15], small deformations of compact complex man-
ifolds admitting a Kähler metric still admit Kähler metrics. This is a consequence of the harmonicity property of Kähler 
metrics and of Hodge theory on compact Kähler manifolds. On the other side, H. Hironaka provided in [12] an example of a 
complex-analytic family of compact complex manifolds being Kähler except for the central fibre, which is only Moı̌šhezon. 
In other words, Kählerness is not a closed property under deformations. It is expected that limits of projective manifolds are 
Moı̌šhezon, and limits of Kähler manifolds are in class C of Fujiki, see [9,16]. Note that ∂∂-Lemma is an invariant property 
under images of holomorphic birational maps, [8, Theorem 5.22]. In particular, compact complex manifolds being Moı̌šhezon 
or belonging to class C of Fujiki satisfy the ∂∂-Lemma, [8, Corollary 5.23]. Hence, in view of the above conjectures, in [3,5], 
the behaviour of the ∂∂-Lemma property under deformation is investigated. In particular, [5, Corollary 2.7] provides another 
argument for proving the stability of ∂∂-Lemma under small deformations; see the references therein for different proofs, 
while an example showing that ∂∂-Lemma is not stable under limits is provided in [3, §4, Corollary 6.1]. Note in fact that 
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the structures on the holomorphically parallelizable Nakamura manifold studied in [3, §4] are not in class C of Fujiki. In 
any case, nilmanifolds and solvmanifolds (that is, compact quotients of connected simply-connected nilpotent, respectively 
solvable, Lie groups by co-compact discrete subgroups) provide a possibly useful class of examples for investigating the 
above questions. In fact, Kählerness for nilmanifolds is characterized by ∂∂-Lemma, see [11, Theorem 1, Corollary], which 
is in turn characterized in terms of Bott–Chern cohomology, [5, Theorem B]. On the other hand, several results concerning 
the computation of Bott–Chern cohomology for nilmanifolds and solvmanifolds are known, see, e.g., [4,2] and the references 
therein. When restricting to the class of nilmanifolds, Kählerness is a closed properties under deformations. This follows by 
a theorem by A. Andreotti, H. Grauert, and W. Stoll in [1]. More precisely, they proved a stability result for complex-analytic 
families of complex tori.

In this short note, we prove a result similar to that by A. Andreotti, H. Grauert, and W. Stoll for the class of holomorphi-
cally parallelizable manifolds, in the category of compact Hermitian manifolds. As pointed out by the Referee, it remains an 
open question whether the result may be stated in the category of compact complex manifolds.

2. Main results

A compact complex manifold is called holomorphically parallelizable if its holomorphic tangent bundle is holomorphically 
trivial, see [19, page 771]. A structure theorem for holomorphically parallelizable manifolds was proven by H.-C. Wang. More 
precisely, holomorphically parallelizable manifolds have a complex Lie group as universal covering.

Theorem 2.1. (See [19, Theorem 1].) Let X be a holomorphically parallelizable manifold. Then X is (biholomorphic to) a quotient G/D
where G is a connected simply-connected complex Lie group and D is a discrete subgroup.

Holomorphically parallelizable manifolds having a complex solvable Lie group as universal covering were studied by 
I. Nakamura in [14]. He initiated a classification of holomorphically parallelizable solvmanifolds up to complex dimension 5
in [14, §6], then completed by D. Guan in [10]. Moreover, by explicitly constructing the Kuranishi family of deformations of 
some holomorphically parallelizable solvmanifolds of complex dimension 3, in [14, §3], it was proved that being holomor-
phically parallelizable is not a stable property under small deformations of the complex structure, [14, page 86]. A detailed 
study of holomorphically parallelizable nilmanifolds, and of their Kuranishi space and stability was done by S. Rollenske 
in [17].

The structure theorem by H.-C. Wang allows us to generalize and simplify a stability result by A. Andreotti, H. Grauert, 
and W. Stoll, [1, Theorem 8]. In the proof below, the classical and well-known Montel theorem (also called generalized Vitali 
theorem) is used.

Theorem 2.2 (Montel theorem). (See, e.g., [15, Proposition 6].) Let F = { f } be a family of holomorphic functions on an open set 
� ⊆ C

n such that, for any compact set K ⊆ �, there exists a positive constant MK such that, for any z ∈ K , for any f ∈ F , it holds 
| f (z)| < MK . Then any sequence { fn}n ⊆F contains a subsequence that converges uniformly on compact subsets of �.

We can now state and prove the main result of this note.

Theorem 2.3. Let {(Xt , gt)}t∈(−ε,1) be a smooth family of compact Hermitian manifolds, with ε > 0 small enough. Suppose that Xt

is holomorphically parallelizable for any t ∈ (0, 1), with a pointwise gt -orthonormal co-frame 
{
ϕ j(t)

}
j of holomorphic 1-forms. Then 

X0 is holomorphically parallelizable.

Proof. First of all, by the Ehresmann theorem, for any t ∈ (−ε, 1), we see Xt = (X, Jt) where { Jt}t∈(−ε,1) is a family of 
complex structures on the differentiable manifold X varying smoothly in t .

By definition, the holomorphic tangent bundle T 1,0 Xt of Xt is holomorphically-trivial for any t ∈ (0, 1). Equivalently, the 
holomorphic co-tangent bundle 

(
T 1,0 Xt

)∗
of Xt is holomorphically-trivial for any t ∈ (0, 1). Hence, by the assumptions, we 

choose 
{
ϕ1(t), . . . ,ϕn(t)

}
global pointwise gt -orthonormal co-frame of holomorphic 1-forms on Xt depending smoothly 

on t , where n denotes the complex dimension of Xt .
Denote by (·, ··)t the induced L2-Hermitian product on 1-forms, defined as (ϕ,ψ)t := ∫

X ϕ ∧∗gt ψ̄ , where ∗gt denotes the 
Hodge-∗-operator associated with gt .

For any fixed z0 ∈ X0, consider a local holomorphic coordinate chart(
U × (−δ, δ),

(
z1 = x1 + i x2, . . . , zn = x2n−1 + i x2n, t

))
centred at (z0, 0) on {Xt}t∈(−ε,1) . Locally on U × (0, δ), for j ∈ {1, . . . , n},

ϕ j(z, t)
loc=

n∑
α=1

ϕ
j
α(z1, . . . , zn, t)dzα in U × (0, δ) ,

where 
{
ϕ

j
α(z1, . . . , zn, t)

}
are smooth in (z1, . . . , zn, t) and holomorphic in (z1, . . . , zn).
α
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We claim that, for any α ∈ {1, . . . , n}, the set 
{
ϕ

j
α(z1, . . . , zn, t)

}
t∈

(
0, δ

2

] is a uniformly-bounded family of holomorphic 

functions on compact subsets. More precisely, this follows from the following two observations. Fix an open relatively 
compact V in U and consider t varying in 

(
0, δ

2

]
. First, there exists a positive constant C̃ such that, for every (z, t) ∈

V × (
0, δ

2

]
, there hold

n∑
α,β=1

gα,β̄
t (z)uα ūβ ≥ C̃

n∑
γ =1

∣∣uγ

∣∣2 and
√

det
(

gt, α,β(z)
)
α,β

≥ C̃

where (uα)α∈{1,...,n} is a vector in Cn . Second, for any j ∈ {1, . . . , n}, the 1-form ϕ j(t) has uniformly bounded norm with 
respect to the L2-Hermitian product induced by gt . Therefore, we have

max
t∈

[
0, δ

2

] Vol(X, gt)

≥
(
ϕ j(t),ϕ j(t)

)
t

=
∫
X

∑
α,β

gαβ̄
t (z)ϕ j

α(z, t)ϕ̄ j
β(z, t)

√
det

(
gt, α,β(z)

)
α,β

dx1 ∧ · · · ∧ dx2n

≥ C̃2
∫
V

n∑
γ =1

∣∣∣ϕ j
γ (z, t)

∣∣∣2
dx1 ∧ · · · ∧ dx2n

from which we get

C−2 ≥
∫
V

∣∣∣ϕ j
γ (z, t)

∣∣∣2
dx1 ∧ · · · ∧ dx2n .

Classical estimates now imply that, given a compact subset K in V , there exists a constant AK > 0 such that ∣∣∣ϕ j
γ (z, t)

∣∣∣ ≤ Ak for any (z, t) ∈ K × (
0, δ

2

]
. Then we apply the Montel theorem. In fact, for fixed j and γ , the family {

ϕ
j
γ (z1, . . . , zn, t)

}
t∈

(
0, δ

2

] is a family of holomorphic functions on V uniformly bounded on compact subsets K in V . Then, 

up to pick-out a subsequence, ϕ j
α(z1, . . . , zn, t) converges uniformly on compact subsets, as t → 0, to a holomorphic function 

ϕ
j
α(z1, . . . , zn, 0) on V .

Now, we take another local holomorphic coordinate chart intersecting the first one. Then we extract another subse-
quence in such a way that the convergence holds for both charts. By continuing in this way, we can construct a set {
ϕ1(0), . . . , ϕn(0)

}
of holomorphic 1-forms on X0.

We claim that this set is orthogonal with respect to the L2-Hermitian product associated with g0. Indeed, consider a 
smooth partition of unity {ρ�}� associated with a covering {U�}� with coordinate holomorphic charts as in notations above. 
We have(

ϕ j(0),ϕk(0)
)

0

=
∑

�

∫
U�

ρ�

n∑
α,β=1

gαβ̄

�, 0(z)ϕ j
�, α(z,0)ϕk

�, β(z,0)
√

det
(

gt, α,β(z)
)
α,β

dx1 ∧ · · · ∧ dx2n

=
∑

�

∫
U�

ρ�

n∑
α,β=1

lim
t→0

gαβ̄
�, t(z)ϕ j

�, α(z, t)ϕk
� β(z, t)

√
det

(
gt, α,β(z)

)
α,β

dx1 ∧ · · · ∧ dx2n

= lim
t→0

∑
�

∫
U�

ρ�

n∑
α,β=1

gαβ̄
�, t(z)ϕ j

�, α(z, t)ϕk
� β(z, t)

√
det

(
gt, α,β(z)

)
α,β

dx1 ∧ · · · ∧ dx2n

= lim
t→0

(
ϕ j(t),ϕk(t)

)
t

= lim
t→0

δ jk = δ jk .

Now, we claim that 
{
ϕ j(0)

}
j∈{1,...,n} are in fact linearly independent at every point. Indeed, consider a coordinate holo-

morphic chart as in notations above. Then

ϕ1(z, t) ∧ · · · ∧ ϕn(z, t) = det
(
ϕ

j
α(z, t)

)
dz1 ∧ · · · ∧ dzn .
j,α
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The holomorphic functions det
(
ϕ

j
α(z, t)

)
j,α

converge to det
(
ϕ

j
α(z,0)

)
j,α

for t → 0 uniformly on compact subsets. We show 

that det
(
ϕ

j
α(z,0)

)
j,α

is not identically zero. Indeed, {ϕ1	p(t), . . . , ϕn	p(t)} being orthonormal with respect to gt	p at any 

point p ∈ X , we have:
∫
X

∣∣∣∣det
(
ϕ

j
α(0)

)
j,α

∣∣∣∣
2

dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n

= lim
t→0

∫
X

∣∣∣∣det
(
ϕ

j
α(t)

)
j,α

∣∣∣∣
2

dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n

= lim
t→0

c(n) · Vol(X, gt)

= c(n) · Vol(X, g0) > 0 ,

where c(n) is a constant depending just on the complex dimension. It follows that 
∣∣∣∣det

(
ϕ

j
α(z,0)

)
j,α

∣∣∣∣
2

is not identically 

zero. Therefore, up to pick-out a subsequence, by the Bochner theorem, [7, Theorem VIII.8], we obtain that det
(
ϕ

j
α(z,0)

)
j,α

is nowhere vanishing, proving the claim.
Therefore 

{
ϕ j(0)

}
j∈{1,...,n} provides a global co-frame of holomorphic 1-forms for X0, and hence X0 is holomorphically 

parallelizable. �
Note that if dϕ j(t) = 0, then also dϕ j(0) = 0, for any j ∈ {1, . . . , n}. In particular, by [19, Theorem 1], one recovers the 

stability result for differentiable families of complex tori by A. Andreotti, H. Grauert, and W. Stoll.

Theorem 2.4. (See [1, Theorem 8] by A. Andreotti, H. Grauert, and W. Stoll.) Let {Xt}t∈(−ε,1) be a differentiable family of compact 
complex manifolds, with ε > 0 small enough. Suppose that Xt is a complex torus for any t ∈ (0, 1). Then X0 is a complex torus.

Proof. We take a co-frame {ϕ j(t)} j of holomorphic 1-forms on Xt = t
∖
C

n = (X, Jt) varying smoothly in t . We set gt :=∑
j ϕ

j(t) 
 ϕ̄ j(t). We claim that g0 := limt→0 gt is a Hermitian metric on X0. Indeed, we have
∫
X

ϕ1(0) ∧ · · · ∧ ϕn(0) ∧ ϕ̄1(0) ∧ · · · ∧ ϕ̄n(0)

= lim
t→0

∫
X

ϕ1(t) ∧ · · · ∧ ϕn(t) ∧ ϕ̄1(t) ∧ · · · ∧ ϕ̄n(t)

= lim
t→0

det

(
�(t)
�̄(t)

)

= det

(
�(0)

�̄(0)

)
�= 0

by [1, page 341], where �(t) is the period matrix of Xt .
Finally, we claim that a compact complex holomorphically parallelizable manifold X = G/D of complex dimension n is a 

torus if and only if the first Betti number is b1 = 2n.
Indeed, note that b1 = dimR G/ [G, G] by the Sakane theorem, [18, Theorem 1], see also [19, Corollary 1]. The statement 

follows, since t �→ b1(Xt) is locally constant at 0 by the Ehresmann theorem. �
In particular, one gets the following.

Corollary 2.5. In the class of holomorphically parallelizable manifolds, respectively nilmanifolds, the property of being Kähler is stable 
for both small and large deformations.

Proof. By [19, Corollary 2], holomorphically parallelizable manifolds admit Kähler metrics if and only if they are complex 
tori. Respectively, by [6, Theorem A], nilmanifolds admit Kähler structures if and only if they are tori. By [1, Theorem 8], the 
statement follows. �
Remark 2.6. Complex solvable Lie groups up to complex dimension 5 are classified by I. Nakamura in [14, §6]. For example, 
the family in class (IV.5) is characterized by the structure equations
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dϕ1 = 0 , dϕ2 = ϕ1 ∧ ϕ2 , dϕ3 = αϕ1 ∧ ϕ3 , dϕ4 = −(1 + α)ϕ1 ∧ ϕ4 ,

where α ∈ C is such that α(1 + α) �= 0. Note that, for α → 0, the above family degenerates to the class (IV.4), which is 
characterized by the structure equations

dϕ1 = 0 , dϕ2 = 0 , dϕ3 = ϕ2 ∧ ϕ3 , dϕ4 = ϕ2 ∧ ϕ4 .

Holomorphically parallelizable solvmanifolds up to complex dimension 5 are classified by D. Guan in [10, Classification 
Theorem, Theorem 2, Theorem 3]. In this case, we cannot find an example showing that the property of being holomorphi-
cally parallelizable with a fixed universal covering is not preserved at the limit. We wonder whether such an example can 
be found.

Remark 2.7. As pointed out by the Referee, we ask whether the result in Theorem 2.3 may be stated in the category of 
compact complex manifolds.
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