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Let G be the wonderful compactification of a simple affine algebraic group G defined over 
C such that its center is trivial and G �= PSL(2, C). Take a maximal torus T ⊂ G , and denote 
by T its closure in G . We prove that T coincides with the connected component, containing 
the identity element, of the group of automorphisms of the variety T .
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r é s u m é

Soit G la compactification magnifique d’un groupe algébrique affine G défini sur C, dont 
le centre est trivial et tel que G �= PSL(2, C). Soit T ⊂ G un tore maximal, et soit T son 
adhérence dans G . Nous montrons que T est égal à la composante connexe contenant 
l’élément neutre du groupe d’automorphismes de la variété T .

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G be a simple affine algebraic group defined over the complex numbers such that the center of G is trivial. De 
Concini and Procesi constructed a very interesting compactification of G , which is known as the wonderful compactification 
[2, p. 14, 3.1, THEOREM]. The wonderful compactification of G will be denoted by G . Fix a maximal torus T of G . Let T
denote the closure of T in G . The connected component, containing the identity element, of the group of all automorphisms 
of the variety T will be denoted by Aut0(T ). For more details about the variety T , we refer to [1, § 1]. Our aim here is to 
compute Aut0(T ).

Using the action of G on G , we have T ⊂ Aut0(T ); this inclusion does not depend on whether the right or the left action 
is chosen. We prove that T = Aut0(T ), provided that G �= PSL(2, C); see Theorem 3.1.

Note that Aut(T ) is not connected since T is stable under the conjugation of the normalizer NG (T ) of T in G .
If G = PSL(2, C), then T = P

1, and hence Aut0(T ) = PSL(2, C).
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2. Lie algebra and algebraic groups

In this section, we recall some basic facts and notation on Lie algebra and algebraic groups (see [5,6] for details). Through-
out G denotes an affine algebraic group over C which is simple and of adjoint type. We also assume that the rank of G is 
at least two, equivalently G �= PSL(2, C).

For a maximal torus T of G , the group of all characters of T will be denoted by X(T ). The Weyl group of G with respect 
to T is defined as W := NG(T )/T , where NG(T ) is the normalizer of T in G . By R ⊂ X(T ) we denote the root system of G
with respect to T . For a Borel subgroup B of G containing T , let R+(B) denote the set of positive roots determined by T
and B . Let

S = {α1, · · · ,αn}
be the set of simple roots in R+(B). Let B− denote the opposite Borel subgroup of G determined by B and T . For α ∈ R+(B), 
let sα ∈ W be the reflection corresponding to α. The Lie algebras of G , T and B will be denoted by g, t and b, respectively. 
The dual of the real form tR of t is X(T ) ⊗R = HomR(tR, R).

The positive definite W -invariant form on HomR(tR, R) induced by the Killing form on g is denoted by ( , ). We use 
the notation

〈ν ,α〉 := 2(ν,α)

(α,α)
.

In this setting, one has the Chevalley basis

{xα,hβ | α ∈ R, β ∈ S}
of g determined by T . For a root α, we denote by Uα (respectively, gα) the one-dimensional T stable root subgroup of G
(respectively, the subspace of g) on which T acts through the character α.

Now, let σ be the involution of G × G defined by σ(x, y) = (y, x). Note that the diagonal subgroup �(G) of G × G is 
the subgroup of fixed points, while T × T is a σ -stable maximal torus of G × G and B × B− is a Borel subgroup having the 
property that σ(α) ∈ −R+(B × B−) for every α ∈ R+(B × B−).

Let G denote the wonderful compactification of the group G , where G is identified with the symmetric space (G ×
G)/�(G) (see [2, p. 14, 3.1. THEOREM]). Let T be the closure of T in G .

3. The connected component of the automorphism group

Recall that if X is a smooth projective variety over C, the connected component of the group of all automorphisms of 
X containing the identity automorphism is an algebraic group (see [8, p. 17, Theorem 3.7] and [4, p. 268] (which deals 
also with the case when X is singular or is defined over any field)). Further, the Lie algebra of this automorphism group is 
isomorphic to the space of all vector fields on X , that is the space H0(X, �X ) of all global sections of the tangent bundle 
�X of X (see [8, p. 13, Lemma 3.4]).

Let Aut(T ) denote the group of all algebraic automorphisms of the variety T . Let

Aut0(T ) ⊂ Aut(T )

be the connected component containing the identity element. We note that Aut0(T ) is an algebraic group with Lie algebra 
H0(T , �T ), where �T is the tangent bundle of the variety T ; the Lie algebra structure on H0(T , �T ) is given by the Lie 
bracket of vector fields.

The subvariety T ⊂ G is stable under the action of T × T . Further, the subgroup T × 1 ⊂ T × T acts faithfully on T , and 
T ⊂ T is a stable Zariski open dense subset for this action of T . Hence, we get an injective homomorphism:

ρ : T −→ Aut0(T ) .

Theorem 3.1. The above homomorphism ρ is an isomorphism.

Proof. We know that T is a maximal torus of Aut0(T ) [3, p. 521, Corollaire 1]. Choose a Borel subgroup B ′ ⊂ Aut0(T )

containing the maximal torus T of Aut0(T ). The action of B ′ on T fixes a point because T is a projective variety (see [6, p. 
134, 21.2, Theorem]). Let x ∈ T be a point fixed by B ′ . Clearly, nT n−1 = T for n ∈ NG(T ), and the diagonal subgroup of T × T
acts trivially on T . Hence W = NG(T )/T is a subgroup of Aut(T ). The diagonal subgroup of T × T acts trivially on T . So we 
see that T × T fixes the point x. Therefore, by [1, p. 477, (1.2.7)] and [1, p. 478, (1.3.8)] we have that x = w(z) for some 
w ∈ W , where z is the unique B × B− fixed point in G . Using conjugation by w−1, we may assume that B ′ fixes z. Let

Q ⊂ Aut0(T )

be the stabilizer subgroup for the point z. As B ′ ⊂ Q , it follows that Q is in fact a parabolic subgroup of Aut0(T ).
We first show that Aut0(T ) is reductive. Let Ru be the unipotent radical of Aut0(T ). Therefore, Ru is also the unipotent 

radical of Aut(T ). Hence w Ru w−1 = Ru for all w ∈ W . Consequently, Ru ⊂ B ′ fixes w(z) for every w ∈ W .
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For χ ∈ X(B) = X(T ), let Lχ be the line bundle on G associated with χ (see [2, p. 26, 8.1, Proposition]). Take any 
w ∈ W . The action of Ru fixes w(z), so the fiber (Lχ )w(z) of Lχ over w(z) is a one-dimensional representation of Ru . This 
Ru-module (Lχ )w(z) is trivial because the group Ru is unipotent.

Let C[T ] be the coordinate ring of the affine algebraic group T . We note that C[T ] is a unique factorization domain, 
and therefore any line bundle on T is trivial. As T ⊂ T is a T stable open dense subset for the left translation action, we 
see that the T module H0(T , Lχ ) is a submodule of C[T ]. If χ is a dominant character of T , and w ∈ W , then the weight 
space C[T ] of weight −w(χ) is one dimensional and spanned by t−w(χ) . Moreover, we have t−w(χ) ∈ H0(T , Lχ ), because 
it is the unique section of weight −w(χ) not vanishing at w(z). Thus, from the above it follows that t−w(χ) is fixed by Ru
for every dominant character χ of T and every w ∈ W .

The set {tχ | χ ∈ X(T )} is a basis for the complex vector space C[T ]. Therefore, the action of Ru on H0(T , Lχ ) is trivial 
for every regular dominant character χ of T . We have

T ⊂ P(H0(T , Lχ )) ,

and hence it follows that the action of Ru on T is trivial, implying that Ru is trivial. Thus, the group Aut0(T ) is reductive.
Next we will show that Q = B ′ . Fix a dominant character χ of T ⊂ B . As Aut0(T ) is reductive, Aut0(T )/Z is semisimple, 

where Z(⊂ Q ) is the center of Aut0(T ). Note that Q /Z is a parabolic subgroup of Aut0(T )/Z and that it fixes z; by the 
arguments in the proofs of [7, p. 81–82, 3.2, Proposition and 3.3, Corollary] there is a positive integer a such that Q /Z acts 
linearly on the fiber of the line bundle L⊗a

χ over z through some character χ ′ of Q /Z . Pulling back χ ′ to Q , we see that Q
acts on the fiber of the line bundle L⊗a

χ over z by a character. The group X(T ) is finitely generated and Abelian, and hence 
the image of the restriction map

X(Q ) −→ X(B ′) = X(T )

is of finite index. This implies that the rank of X(Q ) is equal to the rank of X(B ′). Thus, we have Q = B ′ .
We will now show that Aut0(T ) is not semisimple. If Aut0(T ) is semisimple, then

dim T = dim T ≤ dim B ′
u = dim(Aut0(T )/B ′) , (1)

where B ′
u is the unipotent radical of B ′ . Note that by the above observation, B ′ is the stabilizer of z in Aut0(T ). Since B ′ is a 

Borel subgroup of Aut0(T ), Aut0(T )/B ′ is a closed subvariety of T . Thus from (1), we get that Aut0(T )/B ′ = T . This implies 
that T = (P1)n , and Lie(Aut0(T )) = sl(2, C)n , where n = dim T . The T -fixed points of (P1)n are indexed by the elements of 
the Weyl group of PSL(2, C)n . Therefore, T has 2n fixed points for the action of T . On the other hand, by [1, p. 477, (1.2.7) 
and p. 478, (1.3.8)], all w(z) ∈ T , w ∈ W , are fixed by T , and w ′(z) = w(z) only if w ′ = w . Consequently, the order of W
is at most 2n . As n = dim T , this is possible only if W = Sn

2. Hence it follows that G = PSL(2, C)n . But this contradicts the 
assumption that G is simple of rank n ≥ 2. So Aut0(T ) is not semisimple.

The group Aut0(T ) is reductive but not semisimple, and this implies that the connected component Z 0, containing the 
identity element, of the center of Aut0(T ) is a positive dimensional sub-torus of T . Further, since

wAut0(T )w−1 = Aut0(T ) ,

it follows that w Z 0 w−1 = Z 0 for every w ∈ W . Thus, the restriction map

r : X(T ) ⊗Z R −→ X(Z 0) ⊗Z R (2)

is a nonzero homomorphism of W modules. Note that X(T ) ⊗ R is an irreducible W module (this is because G is simple). 
So we conclude that the homomorphism r in (2) is an isomorphism. Consequently, we have T = Z 0 and T = Aut0(T ). �
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