Algebraic geometry

On a question of Mehta and Pauly

Sur une question de Mehta et Pauly

Holger Brenner ${ }^{\text {a }}$, Axel Stäbler ${ }^{\text {b,1 }}$
${ }^{\text {a }}$ Universität Osnabrück, Fachbereich 6, Albrechtstr. 28a, 49069 Osnabrück, Germany
b Johannes Gutenberg-Universität Mainz, Fachbereich 8, Staudingerweg 9, 55099 Mainz, Germany

A R T I C L E I N F O

Article history:

Received 13 April 2015
Accepted after revision 24 June 2015
Available online 26 July 2015
Presented by Claire Voisin

Abstract

In this short note, we provide explicit examples in characteristic p on certain smooth projective curves where for a given semistable vector bundle \mathcal{E} the length of the HarderNarasimhan filtration of $F^{*} \mathcal{E}$ is longer than p. This negatively answers a question of Mehta and Pauly raised in [2].

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

Dans cette courte note, nous donnons des exemples explicites en caracteristique p sur certaines courbes projectives lisses où, pour un fibré vectoriel semi-stable donné \mathcal{E}, la longeur de la filtration d'Harder-Narasimhan de $F^{*} \mathcal{E}$ est plus grande que p. Cela répond negativement à une question posée par Mehta et Pauly dans [2].
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

In [2, page 2], Mehta and Pauly asked whether for a smooth projective curve over a field of characteristic $p>0$ and \mathcal{E} a semistable bundle on X the length of the Harder-Narasimhan filtration of $F^{*} \mathcal{E}$ is at most p. In [4, Construction 2.13], this is answered negatively. Examples are constructed based on a result of Sun [3]. The bundles for which examples are obtained in [4] have rank $\geq 2 p$ (in fact, examples are constructed for any $n p$ with $n \geq 2$) and are over curves of large genus, since restriction theorems and Bertini's Theorem are used. The purpose of this short note is to provide surprisingly simple down-to-earth examples in characteristic p for certain smooth plane curves and bundles of rank $p+1 \leq r \leq\left\lfloor\frac{3 p+1}{2}\right\rfloor$. In characteristic 2 , negative examples exist on any smooth projective curve of genus ≥ 2. We note that our examples are only polystable, while one should be able to obtain stable bundles using the methods outlined in [4].

1. The example

Proposition 1.1. Let X be a smooth projective curve over an algebraically closed field k of positive characteristic. Let $\mathcal{E}_{i}, i=1, \ldots, n$ be semistable rank-two bundles of slope μ on X such that the $F^{*} \mathcal{E}_{i}$ split as $F^{*} \mathcal{E}_{i}=\mathcal{L}_{i} \oplus \mathcal{G}_{i}$ with $\mu\left(\mathcal{L}_{i}\right)>\mu\left(\mathcal{G}_{i}\right)$. Assume, moreover, that

[^0]$\mu\left(\mathcal{L}_{i}\right)>\mu\left(\mathcal{L}_{i+1}\right)$ for all $i=1, \ldots, n-1$. Then $\mathcal{S}=\bigoplus_{i=1}^{n} \mathcal{E}_{i}$ is semistable and $F^{*} \mathcal{S}$ is unstable and its Harder-Narasimhan filtration is:
$$
0 \subset \mathcal{L}_{1} \subset \mathcal{L}_{1} \oplus \mathcal{L}_{2} \subset \ldots \subset \bigoplus_{i=1}^{n} \mathcal{L}_{i} \subset \bigoplus_{i=1}^{n} \mathcal{L}_{i} \oplus \mathcal{G}_{n} \subset \bigoplus_{i=1}^{n} \mathcal{L}_{i} \oplus \mathcal{G}_{n} \oplus \mathcal{G}_{n-1} \subset \ldots \subset F^{*} \mathcal{S} .
$$

In particular, the Harder-Narasimhan filtration of $F^{*} \mathcal{S}$ has length $2 n$.
Proof. Clearly \mathcal{S} is semistable. We have $\mu\left(\mathcal{G}_{i}\right)=2 \mu-\mu\left(\mathcal{L}_{i}\right)$, which implies $\mu\left(\mathcal{G}_{i}\right)<\mu\left(\mathcal{G}_{i+1}\right)$ for all i. We also have $\mu\left(\mathcal{L}_{i}\right)>$ $\mu\left(\mathcal{G}_{j}\right)$ for all i, j. Indeed, we may assume that $i>j$ then $\mu\left(\mathcal{L}_{i}\right)-\mu\left(\mathcal{G}_{j}\right)=\mu\left(\mathcal{L}_{j}\right)-\mu\left(\mathcal{G}_{i}\right)$ and by assumption $\mu\left(\mathcal{L}_{i}\right)>$ $\mu\left(\mathcal{L}_{j}\right)>\mu\left(\mathcal{G}_{j}\right)$. Hence, $\mu\left(\mathcal{L}_{j}\right)>\mu\left(\mathcal{G}_{i}\right)$.

It follows that the slopes of the quotients \mathcal{Q}_{i} of the filtration form a strictly decreasing sequence. As all \mathcal{Q}_{i} are semistable as line bundles, this is the Harder-Narasimhan filtration of $F^{*} \mathcal{S}$.

Example 1.2. By [1, Theorem 1] any smooth projective curve X of genus ≥ 2 admits a semistable rank two bundle \mathcal{E} with trivial determinant such that $F^{*} \mathcal{E}$ is not semistable. Then $\mathcal{S}=\mathcal{E} \oplus \mathcal{O}_{X}$ is a semistable vector bundle and the HarderNarasimhan filtration of $F^{*} \mathcal{S}$ has length $3>2$. Indeed, if $0 \subset \mathcal{L} \subset F^{*} \mathcal{E}$ is a Harder-Narasimhan filtration of $F^{*} \mathcal{E}$ then $0 \subset \mathcal{L} \subset \mathcal{L} \oplus \mathcal{O}_{X} \subset F^{*} \mathcal{S}$ is one for $F^{*} \mathcal{S}$.

Lemma 1.3. Let X be a smooth projective curve and \mathcal{E} a rank 2 vector bundle on X. If \mathcal{E} is given by an extension $0 \neq c \in \operatorname{Ext}^{1}(\mathcal{M}, \mathcal{L})$ with $\operatorname{deg} \mathcal{L}<\operatorname{deg} \mathcal{M}$ and $F^{*}(c)=0$ then \mathcal{E} is semistable.

Proof. Assume, on the contrary, that \mathcal{E} is unstable and let \mathcal{N} denote the maximal destabilizing subbundle \mathcal{E}. The maximal destabilizing subbundle of $F^{*} \mathcal{E}=F^{*} \mathcal{M} \oplus F^{*} \mathcal{L}$ is $F^{*} \mathcal{M}$. Since the Harder-Narasimhan filtration is unique and in the rank 2 case automatically strong, we must have $F^{*} \mathcal{M}=F^{*} \mathcal{N}$. Hence, $\mathcal{N}=\mathcal{M} \otimes \mathcal{T}$ for some p-torsion bundle \mathcal{T}.

Consider now the natural inclusion $i: \mathcal{M} \otimes \mathcal{T} \rightarrow \mathcal{E}$ and the projection $p: \mathcal{E} \rightarrow \mathcal{M}$. The Frobenius pull-back of the composition $p \circ i$ is the identity. In particular $p \circ i: \mathcal{M} \otimes \mathcal{T} \rightarrow \mathcal{M}$ is non-zero. Since both line bundles are of the same degree, this map is an isomorphism. Hence, if \mathcal{E} is not semistable, then the sequence has to split, which contradicts the assumption $c \neq 0$.

Example 1.4. Let now p be any prime and k an algebraically closed field of characteristic p. We consider the plane curve:

$$
X=V_{+}\left(x^{3 p}+x y^{3 p-1}+y z^{3 p-1}\right) \subseteq \mathbb{P}_{k}^{2}
$$

By the Jacobian criterion, this is a smooth curve. We will construct $\left\lfloor\frac{3 p+1}{2}\right\rfloor$ rank-two bundles of slopes $-\frac{3 p}{2}$ as in Proposition 1.1. The direct sum over at least $\frac{p+1}{2}$ of these bundles then constitutes the desired example.

Consider the cohomology class

$$
c=\frac{x^{3}}{y^{2} z^{2}} \in H^{1}\left(X, \mathcal{O}_{X}(-1)\right)
$$

which is non-zero. Also note that its Frobenius pull-back

$$
F^{*}(c)=\frac{x^{3 p}}{y^{2 p} z^{2 p}}=\frac{-x y^{3 p-1}-y z^{3 p-1}}{y^{2 p} z^{2 p}}=-\left(\frac{x y^{p-1}}{z^{2 p}}+\frac{z^{p-1}}{y^{2 p-1}}\right)
$$

is zero. Moreover, multiplication by z yields a map $\mathcal{O}_{X}(-1) \rightarrow \mathcal{O}_{X}$ and the induced map on cohomology maps c to $\frac{x^{4}}{y^{2} z^{2}}$, which is still non-zero. Let $P_{1}, \ldots, P_{3 p}$ be the (distinct) points on X where z vanishes. ${ }^{2}$ In particular, the cokernel of multiplication by z is just $\bigoplus_{i=1}^{3 p} k\left(P_{i}\right)$, where $k\left(P_{i}\right)$ is the skyscraper sheaf at P_{i}.

Multiplication by z factors as

$$
\mathcal{O}_{X}(-1) \longrightarrow \mathcal{O}_{X}\left(-1+\sum_{i=1}^{l} P_{i}\right) \longrightarrow \mathcal{O}_{X}
$$

for any $l \leq 3 p$. Indeed, the image of the line bundle in the middle is just the sum of the image of $\mathcal{O}_{X}(-1)$ in \mathcal{O}_{X} and the preimage of $\sum_{i=1}^{l} k\left(P_{i}\right)$. In particular, we get an induced factorization on cohomology and we denote the image of c in $H^{1}\left(X, \mathcal{O}_{X}\left(-1+\sum_{i=1}^{l} P_{i}\right)\right)$ by c_{l}. Note that c_{l} is non-zero, while $F^{*}\left(c_{l}\right)$ is zero.

Assume now that l is even. These cohomology classes then define extensions \mathcal{E}_{l} as follows. Let I be the odd numbers from 1 to l and let J be the even numbers from 1 to l. Then

[^1]$$
c_{l} \in H^{1}\left(X, \mathcal{O}_{X}\left(-1+\sum_{i=1}^{l} k\left(P_{i}\right)\right)\right)=\operatorname{Ext}^{1}\left(\mathcal{O}_{X}\left(-\sum_{j \in J} P_{j}\right), \mathcal{O}_{X}\left(-1+\sum_{i \in I} P_{i}\right)\right)
$$
yield extensions
$$
0 \longrightarrow \mathcal{O}_{X}\left(-1+\sum_{i \in I} P_{i}\right) \longrightarrow \mathcal{E}_{l} \longrightarrow \mathcal{O}_{X}\left(-\sum_{j \in J} P_{j}\right) \longrightarrow 0
$$

The \mathcal{E}_{l} all have slope $-\frac{3 p}{2}$ and pulling back along Frobenius splits the above sequence. By Lemma 1.3 the \mathcal{E}_{l} are semistable. Hence, the \mathcal{E}_{l} satisfy the hypothesis of Proposition 1.1, and we obtain the desired examples.

References

[1] H. Lange, C. Pauly, On Frobenius-destabilized rank-2 vector bundles over curves, Comment. Math. Helv. 83 (2008) 179-209.
[2] V.B. Mehta, C. Pauly, Semistability of Frobenius direct images over curves, Bull. Soc. Math. Fr. 135 (1) (2007) 105-117.
[3] X. Sun, Direct images of bundles under Frobenius morphism, Invent. Math. 173 (173) (2008) 427-447.
[4] M. Zhou, The H-N filtration of bundles as Frobenius pull-back, preprint, arXiv:1212.4404v1, 2012.

[^0]: E-mail addresses: hbrenner@uni-osnabrueck.de (H. Brenner), staebler@uni-mainz.de (A. Stäbler).
 1 The second author was supported by SFB/TRR 45 Bonn-Essen-Mainz financed by Deutsche Forschungsgemeinschaft.

[^1]: 2 We could also work with multiplication by x which yields one reduced point and one with multiplicity $3 p-1$.

