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An Ak slow–fast system is a particular type of singularly perturbed ODE. The corresponding 
slow manifold is defined by the critical points of a universal unfolding of an Ak singularity. 
In this note we propose a formal normal form of Ak slow–fast systems.
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r é s u m é

Un système lent–rapide de type Ak est une équation différentielle ordinaire singulièrement 
perturbée avec une structure particulière. La varieté lente correspondante est définie par 
les points critiques d’un déploiment universel d’une singularité de type Ak . Dans cette note, 
nous proposons une forme normale formelle des systèmes lents–rapides de type Ak.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A slow–fast system (SFS) is a singularly perturbed ODE usually written as

ẋ = f (x, z, ε)

ε ż = g(x, z, ε) (1)

where x ∈ R
m , z ∈ R

n and 0 < ε � 1 is a small parameter, and where the over-dot denotes the derivative with respect to a 
time parameter t . Slow–fast systems are often used as mathematical models of phenomena that occur in two time scales. A 
couple of classical examples of real life phenomena that were modeled by an SFS are Zeeman’s heartbeat and nerve-impulse 
models [17]. For ε �= 0, we can define a new time parameter τ by t = ετ . With this new time τ , we can write (1) as

x′ = ε f (x, z, ε)

z′ = g(x, z, ε), (2)

where the prime denotes the derivative with respect to τ . An important geometric object in the study of SFSs is the slow 
manifold, which is defined by
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S = {
(x, z) ∈R

m ×R
n | g(x, z,0) = 0

}
. (3)

When ε = 0, the manifold S serves as the phase space of (1) and as the set of equilibrium points of (2). In the rest of 
the document, we prefer to work with an SFS written as (2). Furthermore, to avoid working with an ε-parameter family of 
vector fields as in (2), we extend (2) by adding the trivial equation ε′ = 0. To be more precise, we treat a C∞-smooth vector 
field defined as follows.

Definition 1.1 (Ak slow–fast system). Let k ∈ N with k ≥ 2. An Ak slow–fast system (for short Ak-SFS) is a vector field X of 
the form

X = ε(1 + ε f1)
∂

∂x1
+

k−1∑
i=2

ε2 f i
∂

∂xi
− (Gk − ε fk)

∂

∂z
+ 0

∂

∂ε
, (4)

where Gk = zk + ∑k−1
i=1 xi zi−1 and where each f i = f i(x1, . . . , xk−1, z, ε) is a C∞-smooth function vanishing at the origin.

Multi-scale models described by an Ak-SFS are of interest as they exhibit local, fast transitions between stable states, 
e.g., [8,13,14,17].

Remark 1.1. The slow manifold associated with an Ak-SFS is defined by

S =
{

(x, z) ∈R
k | zk +

k−1∑
i=1

xi z
i−1 = 0

}
. (5)

The manifold S can be regarded as the critical set of the universal unfolding of a smooth function with an Ak singularity 
at the origin [1,3]. Hence the name Ak-SFS.

Observe that the origin is a non-hyperbolic equilibrium point of X and thus, it is not possible to study its local dynamics 
with the classical Geometric Singular Perturbation Theory [5]. In this case, the blow-up technique [4,9] can be applied to 
desingularize the SFS. This methodology has been successfully used in many cases, e.g., [2,7,10,11,15,16], where many of 
these deal with an Ak-SFS with fixed k = 2 or k = 3. Briefly speaking, the blow-up technique consists in an appropriate 
change of coordinates under which the induced vector field is regular or has simpler singularities (hyperbolic or partially 
hyperbolic).

In this paper we propose a normal form of Ak-SFSs given by Definition 1.1. In this normalization, the unknown functions 
f i of (4) are eliminated. As it is shown below, the structure of the Ak-SFS plays an important role in the normalization 
process. Moreover, this normalization greatly simplifies the local analysis of systems given by (4), as shown in [6,7].

2. Formal normal form of an Ak slow–fast system

We regard the vector field X of Definition 1.1 as X = F + P , where F and P are smooth vector fields called “the principal 
part” and “the perturbation” respectively. That is:

F = ε
∂

∂x1
+

k−1∑
i=2

0
∂

∂xi
− Gk

∂

∂z
+ 0

∂

∂ε
, P =

k−1∑
i=1

ε2 f i
∂

∂xi
+ ε fk

∂

∂z
+ 0

∂

∂ε
. (6)

The idea of the rest of the document is motivated by [12]. In short, we want to formally simplify the expression of X by 
eliminating the perturbation P . The terminology used below is that of [12].

The vector field F is quasihomogeneous of type r = (k, k − 1, . . . , 1, 2k − 1) and quasidegree k − 1 [1,12]. From now on, 
we fix the type of quasihomogeneity r. A quasihomogeneous object of type r will be called r-quasihomogeneous.

Definition 2.1 (Good perturbation). Let F be an r-quasihomogeneous vector field of quasidegree k − 1. A good perturbation 
X of F is a smooth vector field X = F + P , where P = P (x1, . . . , xk−1, z, ε) satisfies the following conditions:

– P is a smooth vector field of quasiorder greater than k − 1,
– P = ∑k−1

i=1 Pi
∂

∂xi
+ Pk

∂
∂z + 0 ∂

∂ε , with P |ε=0 = 0.

Notation By Pδ we denote the space of r-quasihomogeneous polynomials (in k + 1 variables) of quasidegree δ. By Hγ we 
denote the space of r-quasihomogeneous vector fields (in Rk+1) of quasidegree γ and such that for all U ∈ Hγ we have 
U = ∑k

i=1 Uk
∂ + 0 ∂ . The formal series expansion of a function f is denoted by f̂ .
∂xi ∂xk+1
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Definition 2.2 (The inner product 〈·, ·〉r,δ [12]). Let x = (x1, . . . , xn), and s, q ∈N
n . Let f , g ∈Pδ , that is f = ∑

(r,s)=δ f sxs , where 
f s ∈R, xs = xs1

1 · · · xsn
n ; and similarly for g . Then the inner product 〈·, ·〉r,δ is defined as

〈 f , g〉r,δ =
∑

(r,s)=δ

f s gs
(s!)r

δ! , (7)

where (s!)r = (s1!)r1 · · · (sn!)rn , and where (r, s) denotes the dot product r · s. So for monomials one has

〈xs, xq〉r,δ =
{

(s1!)r1 ···(sn!)rn

δ! if s = q with (s, r) = δ,

0 otherwise.
(8)

Accordingly, for vector fields: let X = ∑n
i=1 Xi

∂
∂xi

∈Hδ , and Y = ∑n
i=1 Yi

∂
∂xi

∈Hδ . Then

〈X, Y 〉r,δ =
n∑

i=1

〈Xi, Yi〉r,δ+ri . (9)

Definition 2.3 (The operators d, d∗ and � [12]). The operator d :Hγ →Hγ +k−1 (associated with F ) is defined by d(U ) = [F , U ]
for any U ∈ Hγ , where [·, ·] denotes the Lie bracket. The operator d∗ is the adjoint operator of d with respect to the inner 
product of Definition 2.2. This is, given U ∈Hγ , V ∈Hγ +k−1 we have

〈d(U ), V 〉r,γ +k−1 = 〈U ,d∗(V )〉r,γ . (10)

For any quasidegree β > k − 1, the self adjoint operator �β :Hβ →Hβ is defined by �β(U ) = dd∗(U ) for all U ∈Hβ .

Definition 2.4 (Resonant vector field [12]).

– We say that a vector field U ∈Hβ is resonant if U ∈ ker�β .
– A formal vector field is called resonant if all its quasihomogeneous components are resonant.

Definition 2.5 (Normal form [12]). A good perturbation X = F + R of F is a normal form with respect to F if R is resonant.

It is important to note the following.

Lemma 2.1. ker�β = ker d∗|Hβ
.

Proof. Let α = k − 1, then d : Hγ → Hγ +α and d∗ : Hγ +α → Hγ . Due to the fact that d∗ is the adjoint of d, we have the 
decomposition Hγ = Im d∗|Hγ +α ⊕ ker d|Hγ . Now let U ∈ Hγ +α = Hβ , then �β(U ) = dd∗(U ) = 0 if and only if d∗U ∈ ker d. 
Furthermore, d∗U ∈ Im d∗ . That is d∗U ∈ Im d∗ ∩ ker d. However Im d∗ and ker d are orthogonal. Then �β(U ) = 0 if and only 
if d∗U = 0. �

We now recall a result of [12] (Proposition 4.4); we only adapt it for the present context.

Theorem 2.1 (Formal normal form [12]). Let X = F + P be a good perturbation of F as in Definition 2.1. Then there exists a for-
mal diffeomorphism 	̂ such that 	̂ conjugates X̂ to a vector field F + R, where R is a resonant formal vector field in the sense of 
Definition 2.4.

Finally, we present our result: we prove that the resonant vector field R in Theorem 2.1 associated with F given by (6)
is R = 0.

Theorem 2.2. Let X = F + P be a good perturbation of the vector field

F = ε
∂

∂x1
+

k−1∑
i=2

0
∂

∂xi
−

⎛
⎝zk +

k−1∑
j=1

x j z
j−1

⎞
⎠ ∂

∂z
+ 0

∂

∂ε
. (11)

Then, there exists a formal diffeomorphism 	̂ that conjugates X̂ with F , this is 	̂∗ X̂ = F .

Proof. From Theorem 2.1 and Lemma 2.1 we will show that if P ∈ ker d∗|H≥k then P = 0. To simplify the notation, let α ≥ k, 
P ∈ Hα , β = α − k + 1, and Q ∈ Hβ ; and let x = (x1, . . . , xk−1, z, ε) = (x1, . . . , xk−1, xk, xk+1). If D is an operator, its adjoint 
with respect to the inner product Definition 2.2 is always denoted as D∗ . We start with the inner product (Definition 2.2)
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〈d(Q ), P 〉r,α = 〈Q ,d∗(P )〉r,β . (12)

We can write d(Q ) = ∑k+1
i=1 F (Q i) − Q (Fi), where F (Q i) = ∑k+1

j=1 F j
∂ Q i
∂x j

and similarly for Q (Fi), then

〈d(Q ), P 〉r,α =
k+1∑
i=1

〈F (Q i) − Q (Fi), Pi〉r,β =
k+1∑
i=1

〈F (Q i), Pi〉r,α+ri − 〈Q (Fi), Pi〉r,α+ri

=
k+1∑
i=1

〈Q i, F ∗(Pi)〉r,β+ri − 〈Q (Fi), Pi〉α+ri =
k+1∑
i=1

〈Q i, F ∗(Pi)〉r,β+ri −
k+1∑
j=1

〈Q j,

(
∂ Fi

∂x j

)∗
(Pi)〉β+r j

=
k+1∑
i=1

〈Q i, F ∗(Pi) −
k+1∑
j=1

(
∂ F j

∂xi

)∗
(P j)〉β+ri (13)

Comparing (13) to 〈Q , d∗(P )〉r,β we can write

d∗(P ) =

⎡
⎢⎢⎢⎢⎢⎣

F ∗ −
(

∂ F1
∂x1

)∗ −
(

∂ F2
∂x1

)∗ · · · −
(

∂ Fk+1
∂x1

)∗

−
(

∂ F1
∂x2

)∗
F ∗ −

(
∂ F2
∂x2

)∗ · · · −
(

∂ Fk+1
∂x2

)∗

...
...

. . .
...

−
(

∂ F1
∂xk+1

)∗ −
(

∂ F2
∂xk+1

)∗ · · · F ∗ −
(

∂ Fk+1
∂xk+1

)∗

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

P1
P2
...

Pk+1

⎤
⎥⎥⎦ . (14)

Plugging in the expressions of F and P into (14) we get

d∗(P ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

F ∗ 0 · · · 0 1 0
0 F ∗ · · · 0 z∗ 0
...

...
. . .

...
...

0 0 · · · F ∗ (
zk−1

)∗
0

0 0 · · · 0 F ∗ + Z∗ 0
−1 0 · · · 0 0 F ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

P1
P2
...

Pk−1
Pk
0

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0, (15)

where Z∗ =
(

kzk−1 + ∑k−1
i=2 (i − 1)xi zi−2

)∗
. Note that (15) implies P1 = Pk = 0 and F ∗(P j) = 0 for all j = 2, . . . , k − 1.

Remark 2.1. For k = 2 the result is trivial: we have F = ε ∂
∂x1

− (z2 + x1)
∂
∂z + 0 ∂

∂ε . Therefore d∗(P ) = 0 is written as

d∗(P ) =
[ F ∗ 1 0

0 F ∗ + 2z∗ 0
−1 0 F ∗

][ P1
P2
0

]
= 0, (16)

which immediately implies P1 = P2 = 0.

Now, we study F ∗(P j) = 0. Recall that P = P (x1, . . . , xk−1, z, ε) is not any vector field, but it has the property that 
P (x1, . . . , xk−1, z, 0) = 0. That is, we can write

P =
k−1∑
i=1

ε P̄ i
∂

∂xi
+ ε P̄k

∂

∂z
+ 0

∂

∂ε
, (17)

where P̄ j ∈Pα+r j−2k+1. This is because the (quasihomogeneous) weight of ε is 2k − 1. Now, since it is complicated to work 
with the adjoint, we first rewrite the problem F ∗(ε P̄ j) = 0. We then prove that F ∗(ε P̄ j) = 0 implies that P̄ j = 0.

Note that F ∗(ε P̄ j) = 0 is equivalent to 〈Q , F ∗(ε P̄ j)〉β+r j = 0 for all Q ∈Pβ+r j . Next, we use the definition of F ∗ that is

〈Q , F ∗(ε P̄ j)〉r,β+r j = 〈F (Q ), ε P̄ j〉r,α+r j = 0. (18)

We will now show that if 〈F (Q ), ε P̄ j〉r,α+r j = 0 for all Q ∈ Pβ+r j , then P̄ j = 0. Note that by (18), this is the same as 
proving that F ∗(ε P̄ j) = 0 implies P̄ j = 0. First, we choose an element xq of the basis of Pβ+r j ; this is

xq = xq1
1 · · · x

qk−1
k−1 zqkεqk+1 , (r,q) = β + r j, (19)

then, it follows that



H. Jardón-Kojakhmetov / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 795–800 799
F (xq) = q1xq1−1
1 · · · x

qk−1
k−1 zqkεqk+1+1 −

(
zk +

k−1∑
i=1

xi z
i−1

)
qkxq1

1 · · · x
qk−1
k−1 zqk−1εqk+1 . (20)

Let us write ε P̄ j ∈Pα+r j as

ε P̄ j = ε
∑

(r,p)=α+r j−2k+1

apxp1
1 · · · x

pk−1
k−1 zpkεpk+1 , (21)

where ap ∈ R. We now proceed by recursion on the exponent of ε. Let qk+1 = 0, then the inner product 〈F (Q ), ε P̄ j〉α+r j

has only one term, since F (Q ) has only one monomial containing ε. That is

〈F (Q ), ε P̄ j〉α+r j |qk+1=0 = 〈q1xq1−1
1 · · · x

qk−1
k−1 zqkε, εap xp1

1 · · · x
pk−1
k−1 zpk 〉r,α+r j = 0. (22)

We naturally consider q1 > 0. If q1 = 0, then the equality is automatically satisfied. Recalling Definition 2.2 of the inner 
product, the equality (22) means that

〈q1xq1−1
1 · · · x

qk−1
k−1 zqkε, εap xp1

1 · · · x
pk−1
k−1 zpk 〉r,α+r j = q1ap

(q!)r

(α + r j)! = 0, (23)

and therefore from (22) we have

ap = aq1−1,p2,...,pk,1 = 0, (24)

for all q1 > 0, p2, . . . , pk ≥ 0 (naturally, also satisfying the degree condition (r, p) = α + r j ). Next, let qk+1 = 1. Then

F (xq) = q1xq1−1
1 · · · x

qk−1
k−1 zqkε2 −

(
zk +

k−1∑
i=1

xi z
i−1

)
qkxq1

1 · · · x
qk−1
k−1 zqk−1ε. (25)

Once again, the inner product 〈F (Q ), ε P̄ j〉r,α+r j has only one term, now this is due to the fact that all coefficients ap of 
monomials containing ε are zero due to (24). Then

〈F (Q ), ε P̄ j〉α+r j |qk+1=1 = 〈q1xq1−1
1 · · · x

qk−1
k−1 zqkε2, εap xp1

1 · · · x
pk−1
k−1 zpkε〉r,α+r j = 0. (26)

Therefore, similarly as above, we have the condition

ap = aq1−1,p2,...,pk,2 = 0, (27)

for all q1 > 0, p2, . . . , pk ≥ 0 (naturally, also satisfying the degree condition (r, p) = α + r j). By recursion arguments, assume 
qk+1 = n and that all the coefficients

ap = ap1,p2,...,pk,m = 0, ∀m ≤ n. (28)

Then, again, the inner product 〈F (Q ), ε P̄ j〉r,α+r j has only one term, namely

〈F (Q ), ε P̄ j〉α+r j |qk+1=n = 〈q1xq1−1
1 · · · x

qk−1
k−1 zqkεn+1, εap xp1

1 · · · x
pk−1
k−1 zpkεn〉r,α+r j = 0. (29)

The latter implies:

ap = aq1−1,p2,...,pk,n+1 = 0. (30)

This finishes the proof of 〈F (Q ), ε P̄ j〉r,α+r j = 0, which implies P̄ j = 0 for all j = 2, . . . , k − 1. �
Remark 2.2. Theorem 2.2, together with Borel’s lemma [3], implies that an Ak-SFS X = F + P is smoothly conjugate to a 
smooth vector field Y = F + H where H is flat at the origin. The benefits of this normal form are exploited in [6,7].
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