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We give an analytic version of a formal theorem due to R.J. Hanson and D.L. Russell. This 
version is a result of uniform simplification in a full neighborhood of a turning point for 
linear singularly perturbed differential equations of the second order, which generalizes a 
well-known theorem of Y. Sibuya.
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r é s u m é

Nous donnons une version analytique d’un théorème formel dû à R.J. Hanson et D.L. 
Russell. Il s’agit d’un résultat de simplification uniforme au voisinage d’un point tournant 
pour des équations différentielles linéaires singulièrement perturbées du second ordre, qui 
généralise un théorème connu de Y. Sibuya.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider a singularly perturbed differential system of the form

εY ′ = A(x, ε)Y , where A(x, ε) =
(

εa(x, ε) xμ + εb(x, ε)

xμ+ν + εc(x, ε) −εa(x, ε)

)
, (1)

x is a complex variable, ε is a small complex parameter, a, b, c are bounded holomorphic functions on D(0, r0) × D(0, ε0), 
with μ, ν nonnegative integers such that μ + ν �= 0 and r0, ε0 > 0.

The point x = 0 is a so-called turning point for system (1).
In [3], R.J. Hanson et D.L. Russell proved the following formal result:

Theorem 1.1. There exists T̂ (x, ε) = ∑∞
n=0 Tn(x)εn, a formal power series in ε, where the Tn(x) are square matrices of bounded holo-

morphic functions on D(0, r0) and det T0(x) = 1 on D(0, r0), such that the change of variables Y = T̂ (x, ε)Z reduces the system (1)
to
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εZ ′ = B̂(x, ε)Z , where B̂(x, ε) =

⎛
⎜⎜⎜⎜⎜⎝

ε

μ−1∑
k=0

b̂11
k (ε)xk xμ + ε

μ−1∑
k=0

b̂12
k (ε)xk

xμ+ν + ε

μ+ν−1∑
k=0

b̂21
k (ε)xk ε

μ−1∑
k=0

b̂22
k (ε)xk

⎞
⎟⎟⎟⎟⎟⎠

and the b̂ij
k(ε) are formal power series in ε.

In the present note, we prove the following theorem using the Gevrey theory of composite asymptotic expansions [1,2].

Theorem 1.2. If one of the two following assumptions is satisfied:

(H1) ν is even and c(x,0) = O
(

x
1
2 (ν−2)

)
; (H2) ν is odd and c(x,0) = O

(
x

1
2 (ν−1)

)
,

then, for every r ∈]0, r0[ and every sufficiently small sector S, there exists a square matrix T (x, ε) of bounded holomorphic functions 
on D(0, r) × S, having a 1-Gevrey asymptotic expansion, such that the change of variables Y = T (x, ε)Z reduces the system (1) to

εZ ′ = B(x, ε)Z , where B(x, ε) =

⎛
⎜⎜⎜⎜⎜⎝

ε

μ−1∑
k=0

b11
k (ε)xk xμ + ε

μ−1∑
k=0

b12
k (ε)xk

xμ+ν + ε

μ+ν−1∑
k=0

b21
k (ε)xk −ε

μ−1∑
k=0

b11
k (ε)xk

⎞
⎟⎟⎟⎟⎟⎠

and the bij
k(ε) admit 1-Gevrey asymptotic expansions.

Remark 1. The case μ = 0 was proved by Y. Sibuya in [6].

The assumptions (H1) and (H2) imply that the differential system (1) does not have secondary turning points, which 
appear after some rescaling x = εq X with a suitable rational q. As these conditions are still satisfied by the reduced system 
εZ ′ = B(x, ε)Z , we can rescale this system to a regularly perturbed one.

Remark 2. Note that this theorem is a global result. The differential system (1) can be analytically reduced on every disk 
strictly included in D(0, r0). We obtain this global simplification using the Gevrey composite asymptotic expansions of [1,2]
and accurate tracking of their Gevrey type. This aspect is a technical part of the proof that will not be presented in this 
note. The reader interested in the details is referred to [4].

2. Notations

Given α < β ≤ α + 2π , η0 > 0 and μ > 0, the sector S = S(α, β, η0) is the set of all η ∈ C satisfying 0 < |η| < η0, α <

argη < β , and we call infinite quasi-sector the set V = V (α, β, μ) of all X ∈ C such that μ < |X | and α < arg X < β .
Let Gn(V ) denote the vector space of square matrices G(X) of bounded holomorphic functions on V , having an asymp-

totic expansion in the Poincaré sense at infinity, G(X) ∼ ∑
k≥0 Gk X−k , V 	 X → ∞, and let Hn(r0) denote the vector space 

of square matrices of bounded holomorphic functions on the disk D(0, r0).
In this note, we use the definitions of Gevrey composite asymptotic expansion (and the associated notation ∼ 1

p
) and con-

sistent good covering Sl, V j, V j
l (η) introduced in [1,2].

We say that L(x, η) is a slow matrix if L(x, η) ∼ 1
p

∑
k≥0 Ak(x)ηk , as S 	 η → 0 and x ∈ D(0, r0), with (Ak)k∈N ∈ Hn(r0)

N , 

and that R(x, η) is a fast matrix if there exists a sequence (Gk)k∈N in Gn(V )N such that R(x, η) ∼ 1
p

∑
k≥0 Gk

(
x
η

)
ηk , as 

S 	 η → 0 and x ∈ V (η). In the sequel, we use the variables η and ε simultaneously, but they are always connected by 
ηp = ε, with a suitable integer p.

Let diag(a1, a2) denote the diagonal matrix 
(

a1 0
0 a2

)
.

3. Preliminaries

In this section we prove that a family (Y j
l ) j,l of matrices defined on a consistent good covering, whose differences are 

exponentially small, can be written as a slow–fast product.
Let V j, Sl, V j

l (η), j = 1, . . . , J , l = 1, . . . , L, be a consistent good covering and A, B > 0. We define two spaces, En(A, B)

and Ln(A).
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Definition 3.1. Let En(A, B) denote the vector space of families 
(
Y j

l (x, η)
)

j,l , j = 1, . . . , J , l = 1, . . . , L, of square matrices of 

size n of holomorphic functions defined for η ∈ Sl and x ∈ V j
l (η), satisfying the three following assumptions: there exists a 

constant C > 0 such that

‖Y j
l (x, η)‖ ≤ C, if η ∈ Sl and x ∈ V j

l (η), (2)

‖Y j
l+1(x, η) − Y j

l (x, η)‖ ≤ C exp
(
− A

|η|p

)
, if η ∈ Sl ∩ Sl+1 and x ∈ V j

l (η) ∩ V j
l+1(η), (3)

‖Y j+1
l (x, η) − Y j

l (x, η)‖ ≤ C exp
(
−B

∣∣∣ x
η

∣∣∣p)
, if η ∈ Sl and x ∈ V j

l (η) ∩ V j+1
l (η). (4)

The vector space En(A, B) is equipped with the following norm:

‖(Y j
l ) j,l‖E = inf {C satisfying (2), (3) and (4)} .

Definition 3.2. Let Ln(A) denote the vector space of families 
(
Ll(x, η)

)
l , l = 1, . . . , L, of square matrices of size n of holomor-

phic functions, defined for η ∈ Sl and x ∈ D(0, r0), such that there exists a constant C > 0 satisfying

‖Ll(x, η)‖ ≤ C, if η ∈ Sl and x ∈ D(0, r0), (5)

‖Ll+1(x, η) − Ll(x, η)‖ ≤ C exp
(
− A

|η|p

)
, if η ∈ Sl ∩ Sl+1 and x ∈ D(0, r0). (6)

The vector space Ln(A) is equipped with the following norm:

‖(Ll)l‖L = inf {C satisfying (5) and (6)} .

Theorem 3.3. Let (Y j
l ) j,l ∈ En(A, B). If ‖(Y j

l ) j,l‖E is sufficiently small, then there exists a pair 
(
(Ll)l, (R j

l ) j,l
) ∈ Ln(A) × En(A, B) such 

that the Ll are slow matrices, the R j
l are fast matrices and

I + Y j
l = (I + Ll)(I + R j

l ). (7)

Proof. In [2] Fruchard and Schäfke showed that every element of En(A, B) can be written as a sum of a slow matrix and 
a fast one. We improve their result: there exists a bounded linear operator T : En(A, B) → Ln(A) × En(A, B) such that 
T 
(
(Y j

l )
)

=
(
(Ll), (R j

l )
)

implies that for all (l, j), the Ll are slow matrices, the R j
l are fast ones and Y j

l = Ll + R j
l .

The factorization (7) is equivalent to Ll + R j
l = Y j

l − Ll R
j
l . We can obtain such a factorization as a fixed point of the 

mapping � : Ln(A) × En(A, B) → Ln(A) × En(A, B), � 
(
(Ll), (R j

l )
)

= T 
(
(Y j

l − Ll R
j
l )

)
, provided that ‖(Y j

l )‖E is sufficiently 
small. �
4. Proof of the main theorem

In this section, we present the key steps of the proof of Theorem 1.2. For the sake of simplicity, we assume that ν is an 
even natural number. The case ν odd is proved similarly but requires more precautions; in particular, we need to track the 
parity of functions at each step of the proof.

4.1. Fundamental matrices of solutions to (1)

First we describe the structure of a family of fundamental matrices of solutions to (1) defined on a suitable consistent 
good covering.

Proposition 4.1. For all r ∈]0, r0[, there exist μ > 0, η1 > 0 and Sl, V j, V j
l (η), l = 0, . . . , L − 1, j = 0, . . . , p − 1, a consistent good 

covering of the set {(x, η); 0 < |η| < η1 and μ|η| < |x| < r}, and

Y j
l (x, η) = diag

(
1, x

ν
2

)
· H j

l (x, η) · E j
l (x, η)

a family of fundamental matrices of solutions to (1) such that

(i) p = μ + ν
2 + 1,

(ii) the H j
l (x, η) are holomorphic matrices defined for η ∈ Sl and x ∈ V j

l (η), having a composite asymptotic expansion of Gevrey 
order 1 , as η → 0 in Sl and x ∈ V j

(η),
p l
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(iii) the matrices E j
l (x, η), defined for η ∈ Sl and x ∈ V j

l (η), are of the form

E j
l (x, η) = exp

(
diag

(
− 1

p

xp

ε
+ R−

l (ε) log x ,
1

p

xp

ε
+ R+

l (ε) log x

))
,

where the R−
l (ε) and the R+

l (ε) are holomorphic functions defined on Sl, having an asymptotic expansion of Gevrey order 1 as 
ε → 0 in Sl .

In particular, there exist two positive constants A and B such that (H j
l (x, η)) j,l ∈ E2(A, B).

Using the implicit function theorem, we prove the existence of a family (ql(x, ε))l of polynomials in x of degree ν
2 − 1

without constant term, such that the ql have asymptotic expansions of Gevrey order 1 and the coefficient (1, 2) of the 
matrices Ll introduced later satisfies (Ll)12(x, ε) = O(x

ν
2 ). Now applying Theorem 3.3, we separate the asymptotic of the 

matrices H j
l (x, η) · exp

(
diag(ql, −ql)

)
:

H j
l (x, η) · exp

(
diag

(
ql(x, ε),−ql(x, ε)

)) = Ll(x, ε) · R j
l (x, η),

where the Ll are slow matrices defined on D(0, r) ×	l , with 	l = {
ηp | η ∈ Sl

}
, and the R j

l are fast matrices defined on the 
set of (x, η) such that η ∈ Sl and x ∈ V j

l (η). Let Pl = diag
(

1, x
ν
2

)
· Ll · diag

(
1, x− ν

2

)
. As (Ll)12(x, ε) = O(x

ν
2 ), the coefficient 

(1, 2) of the matrices Pl does not have any poles at x = 0. The matrices Pl are also slow matrices; they have an asymptotic 
expansion of Gevrey order 1: Pl(x, ε) ∼1 P̂ (x, ε) as ε → 0 in 	l and x ∈ D(0, r). We can rewrite the fundamental matrices 
of solutions to system (1):

Y j
l (x, η) = Pl(x, ε) · diag

(
1, x

ν
2

)
· R j

l (x, η) · Ẽ j
l (x, η),

where Ẽ j
l = exp

(
diag(−ql, ql)

)
· E j

l .

4.2. Uniform simplification

In the sequel, the variable η lies in the sector Sl , ε in the sector 	l and x in the quasi-sector V j
l (η) (or in the disk 

D(0, r) if the variable x is associated with a slow matrix). From now on, we omit the indices l and j.
Applying the change of variables Y = P (x, ε)U , we reduce the differential system (1) to

εU ′ = C(x, ε)U , where C = P−1AP − εP−1 P ′. (8)

On the one hand, the expression of C implies that C is a slow matrix. On the other hand, we know a fundamental matrix 
of solutions to equation (8), U (x, η) = diag

(
1, x

ν
2

)
R(x, η)Ẽ(x, η), and we have C = εU ′U−1. We use this second expression 

to give an upper bound on the degree of each coefficient of the matrix Ĉ(x, ε).

Proposition 4.2. The change of variables Y = P (x, ε)U transforms the differential system (1) into εU ′ = C(x, ε)U , where C(x, ε) ∼1
Ĉ(x, ε) as ε → 0 in 	l and x ∈ D(0, r), and

Ĉ(x, ε) =

⎛
⎜⎜⎜⎜⎜⎝

μ+ν/2∑
k=0

ĉ11
k (ε)xk

μ∑
k=0

ĉ12
k (ε)xk

μ+ν∑
k=0

ĉ21
k (ε)xk −

μ+ν/2∑
k=0

ĉ11
k (ε)xk

⎞
⎟⎟⎟⎟⎟⎠

,

where the ĉij
k(ε) are formal power series of Gevrey order 1, such that ĉ12

μ (ε) = 1 + O(ε), ĉ21
μ+ν(ε) = 1 + O(ε) and ĉij

k (ε) = O(ε) if 
k �= μ, μ + ν .

We truncate the Taylor series of the coefficients of the matrix C to define a new matrix C̃ :

C̃(x, ε) =

⎛
⎜⎜⎜⎜⎜⎝

μ+ν/2∑
k=0

c11
k (ε)xk

μ∑
k=0

c12
k (ε)xk

μ+ν∑
c21

k (ε)xk −
μ+ν/2∑

c11
k (ε)xk

⎞
⎟⎟⎟⎟⎟⎠

.

k=0 k=0
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This matrix C̃ still satisfies C̃(x, ε) ∼1 Ĉ(x, ε), as ε → 0 in 	l and x ∈ D(0, r). Now using the exponential estimate of the 
differences C̃l+1 − C̃l and the result of [5], we prove the existence of a matrix 
(x, ε), solution to ε
′ = A
 −
C̃ + R , with 
R = P (C − C̃), which remains exponentially small on D(0, r) × 	l . Then we set P̃ = P + 
. This step can be summarized as 
follows.

Proposition 4.3. For all r ∈]0, r0[, there exists a bounded holomorphic matrix P̃(x, ε) on D(0, r) × 	l , having the same asymptotic 
expansion as P (x, ε), P̃ (x, ε) ∼1 P̂ (x, ε), such that the transformation Y = P̃ (x, ε)U reduces the differential system (1) to εU ′ =
C̃(x, ε)U .

Up to now, we transformed the first differential system into a polynomial differential system, but the condition on the 
degree of the polynomials that appears in Theorem 1.2 is not yet satisfied. To obtain the enunciated simplification, we 
need to apply a last change of variables, U = �(x, ε)Z , where �(x, ε) is a matrix of polynomials in x, which allows us to 
reduce the degree of the diagonal coefficients of the matrix C̃ . Applying the transformation U = �(x, ε)Z , we reduce the 
system εU ′ = C̃(x, ε)U to a polynomial differential system, εZ ′ = B(x, ε)Z , where the matrix B satisfies the conditions of 
Theorem 1.2.
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