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This note is devoted to Keller–Lieb–Thirring spectral estimates for Schrödinger operators 
on infinite cylinders: the absolute value of the ground state level is bounded by a function 
of a norm of the potential. Optimal potentials with small norms are shown to depend on 
a single variable: this is a symmetry result. The proof is a perturbation argument based 
on recent rigidity results for nonlinear elliptic equations on cylinders. Conversely, optimal 
single variable potentials with large norms must be unstable: this provides a symmetry 
breaking result. The optimal threshold between the two regimes is established in the case 
of the product of a sphere by a line.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Cette note est consacrée à des estimations spectrales de Keller–Lieb–Thirring pour des 
opérateurs de Schrödinger sur des cylindres infinis : la valeur absolue de l’état fondamental 
est bornée par une fonction d’une norme du potentiel. Il est montré que les potentiels 
optimaux de petite norme ne dépendent que d’une seule variable : il s’agit d’un résultat de 
symétrie. La preuve provient d’un argument de perturbation qui repose sur des résultats de 
rigidité récents pour des équations elliptiques non linéaires sur des cylindres. À l’inverse, 
les potentiels optimaux de grande norme qui ne dépendent que d’une seule variable sont 
instables : cela fournit un résultat de brisure de symétrie. La valeur optimale qui sépare les 
deux régimes est établie dans le cas du produit d’une sphère et d’une droite.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let (M, g) be a smooth compact connected Riemannian manifold of dimension d − 1, without boundary. We denote 
by Ric the Ricci tensor and by λM1 the lowest positive eigenvalue of the Laplace–Beltrami operator − �g on M. Let us define 
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the minimum of the Ricci curvature of M by κ := infM infξ∈Sd−2 Ric(ξ , ξ) and consider the infinite cylinder C := R ×M. We 
shall denote by x = (s, z) the variable on C , so that the Laplace–Beltrami operator on C can be written as − (∂2

s + �g). For 
simplicity, we shall assume that volg(M) = 1, so that ‖V ‖Lq(C) = ‖V ‖Lq(R) if V is a potential that depends only on s. The 
goal of this note is to compare

�(μ) := sup
{
λC1 [V ] : V ∈ Lq(C) , ‖V ‖Lq(C) = μ

}
and �R(μ) := sup

{
λR1 [V ] : V ∈ Lq(R) , ‖V ‖Lq(R) = μ

}
,

where −λC1 [V ] and −λR1 [V ] denote the lowest eigenvalues of the Schrödinger operators −∂2
s − �g − V and −∂2

s − V , 
respectively, on C and R. What we aim at is a symmetry result that allows us to characterize the regime in which optimal 
potentials depend only on s. The expression of �R(μ) was found by J.B. Keller in [11] and later rediscovered by E.H. Lieb 
and W. Thirring in [12]. We refer to this result as the Keller–Lieb–Thirring inequality, and to [6] for its use in the context of 
Caffarelli–Kohn–Nirenberg inequalities. Let us define

μ1 := q (q − 1)
( √

π 	(q)
	(q+1/2)

)1/q
.

Lemma 1. (See [11,12].) Assume that q ∈ (1, +∞). Then we have

�R(μ) = (q − 1)2 (μ/μ1)
β ∀μ > 0 ,

with β = 2 q
2 q−1 . As a consequence, if V is a nonnegative real valued potential in Lq(R), then we have

λR1 [V ] ≤ �R(‖V ‖Lq(R))

and equality holds if and only if, up to scalings, translations and multiplications by a positive constant,

V (s) = q (q − 1)

(cosh s)2
=: V 1(s) ∀ s ∈R,

where ‖V 1‖Lq(R) = μ1 , λR1 [V 1] = (q − 1)2 . Moreover, the function ϕ(s) = (cosh s)1−q generates the corresponding eigenspace.

The classical Keller inequality in Rd asserts that for all γ ≥ 0 if d ≥ 3, γ > 0 if d = 2, and γ > 1/2 if d = 1, the lowest 
negative eigenvalue, −λR

d

1 [V ], of the operator − � − V satisfies

λR
d

1 [V ]γ ≤ L1
γ ,d ‖V+‖γ +d/2

Lγ +d/2(Rd)
∀ V ∈ Lq(Rd),

where

L1
γ ,d = sup

{(
‖∇u‖2

L2(Rd)
+ ‖u‖2

L2(Rd)

)−(γ +d/2) : ‖u‖Lp(Rd) = 1

}

is the best constant in the inequality if q = p/(p − 2). See [11,12,4] for details. In the case of infinite cylinders, with 
q = γ + d/2 and μ = ‖V+‖La(Rd) → +∞, the inequality in R

d asymptotically determines the semi-classical regime for �(μ), 
but another regime appears for cylinders when μ > 0 is not too large, as in the case of compact manifolds. This is the 
content of our main result, Theorem 2, for which we need one more definition.

Let us introduce

λθ :=
(

1 + δ θ
d − 1

d − 2

)
κ + δ (1 − θ)λM1 with δ = n − d

(d − 1) (n − 1)
,

where the dependence on θ will be discussed at the end of this note, and define

λ� := λθ� where θ� := (d − 2) (n − 1) (3 n + 1 − d (3 n + 5))

(d + 1)
(
d (n2 − n − 4) − n2 + 3 n + 2

) .

Theorem 2. Let d ≥ 2 and q ∈ (d/2, +∞). The function μ �→ �(μ) is convex, positive and such that

�(μ)q−d/2 ∼ L1
q− d

2 , d
μq as μ → +∞ .

Moreover, there exists a positive μ� with

λ�

2 (q − 1)
μ

β

1 ≤ μ
β
� ≤ λM1

2 q − 1
μ

β

1 (1)

and β = 2 q , such that
2 q−1
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�(μ) = �R(μ) ∀μ ∈ (0,μ�] and �(μ) > �R(μ) ∀μ > μ� .

As a special case, if M = S
d−1 , inequalities in (1) are in fact equalities.

In other words, we have shown the Keller–Lieb–Thirring inequality on the cylinder C:

λC1 [V ] ≤ �
(‖V+‖Lq(C)

) ∀ V ∈ Lq(C), (KLT)

where the function � : R+ → R
+ has the properties stated in Theorem 2. If ‖V+‖Lq(C) ≤ μ� , optimality is achieved, up to 

scalings, translations and multiplications by a positive constant, by the potential V 1 of Lemma 1. This is based on a rigidity 
result that, in contrast with results on compact manifolds, involves a non-constant function.

The existence of the function μ �→ �(μ) is an easy consequence of a Hölder estimate:

‖∂su‖2
L2(C)

+ ‖∇g u‖2
L2(C)

−
∫
C

V |u|2 dx ≥ ‖∂su‖2
L2(C)

+ ‖∇g u‖2
L2(C)

− μ‖u‖2
Lp(C)

with μ = ‖V+‖Lq(C) and q = p/(p − 2), and of the Gagliardo–Nirenberg–Sobolev inequality

‖∂su‖2
L2(C)

+ ‖∇g u‖2
L2(C)

+ λ‖u‖2
L2(C)

≥ μ(λ)‖u‖2
Lp(C) ∀ u ∈ H1(C) , (GNS)

where λ > 0 is a parameter and μ(λ) is the corresponding optimal constant. The existence of an optimal function for (GNS)
can be argued as in [1]. Inverting λ �→ μ(λ) provides us with μ �→ �(μ). See [3] for details and basic properties in a similar 
case.

The most important point in Theorem 2 is the issue of symmetry and symmetry breaking. We shall say that there is 
symmetry if equality in (KLT) is achieved by functions depending only on s, and symmetry breaking otherwise. By the 
method used in [8], there is a continuous curve p �→ μ�(p) defined on (2, 2∗) such that symmetry holds if μ ≤ μ� , and 
symmetry breaking holds if μ > μ� . It is then clear from the definition of � and �� that �(μ) ≥ �R(μ) with equality if 
and only μ ≤ μ� . The main issue is henceforth to estimate μ� . Our contribution is based on two perturbation methods:

(i) for μ large enough, a non-radial perturbation of an optimal symmetric potential shows symmetry breaking. This is done 
in the spirit of [1,10]. The computation gives the upper bound on μ� and a detailed proof is given in Section 2;

(ii) for μ not too large, symmetry holds. A sketch of a proof is given in Section 3. The key idea is to consider an optimal 
potential, symmetric or not, and perturb it adequately to prove that it has to be symmetric. The perturbation depends 
nonlinearly on the minimizer. The proof is not done at the level of (KLT), but at the level of the dual (GNS) inequality. 
This gives the lower bound on μ� . Details will be given in a forthcoming paper, [7].

Apart from Euclidean spaces, very little is known on estimates like the ones of Theorem 2. A quantitative but non-optimal 
result has been established in [6, Corollary 8]. Some results of symmetry for (KLT)-type inequalities have been established 
for compact manifolds without boundary, see [3,4], and for bounded convex domains in Rd in relation with the Lin–Ni 
conjecture, see [9]. To our knowledge, the case of non-compact manifolds was open so far, apart from the case of the line 
which was studied in [5] and the partial results of [6]. Here we give a result that is optimal when M is a sphere. Let us 
finally notice that various observations connecting the sphere, the Euclidean space and the line have been collected in [5].

2. One-dimensional potentials: proof of Lemma 1 and non-symmetric instability

We start by a short proof of Lemma 1 for the sake of completeness. Notations will be reused in the proof of Lemma 3.

Proof of Lemma 1. By applying Hölder’s inequality, we get that∫
R

|∂su|2 ds −
∫
R

V |u|2 ds ≥ ‖∂su‖2
L2(R)

− μ‖u‖2
Lp(R) ≥ −λ‖u‖2

L2(R)
,

where μ = ‖V ‖Lq(R) and q = p/(p − 2). With V = V 1, λ is chosen such that μ(λ) = μ1 := ‖V 1‖Lq(R) where μ(λ) is the 
optimal constant in the inequality

‖∂su‖2
L2(R)

+ λ‖u‖2
L2(R)

≥ μ(λ)‖u‖2
Lp(R) ∀ u ∈ H1(R) .

It is standard (see for instance [5]) that the function ϕ(s) = (cosh s)−2/(p−2) is optimal for the inequality written with 
μ = μ1 and solves

− (p − 2)2 ∂2
s ϕ + 4ϕ − 2 p ϕp−1 = 0 .
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Altogether, this proves Lemma 1 when μ = μ1 and λ1[V 1] = 4
(p−2)2 = (q − 1)2 because u = ϕ and V = V 1 = 2 p

(p−2)2 ϕp−2 =
q (q − 1) ϕp−2 corresponds to the equality case in Hölder’s inequality. More details can be found in [2].

If μ �= μ1, we can use scalings. Let Vν(s) = ν2 V (ν s). If u1 �= 0 solves

− ∂2
s u1 − V u1 + λ1[V ] u1 = 0 ,

then uν(s) = u1(ν s) is an eigenfunction associated with λ1[Vν ] = ν2 λ1[V ]. A change of variables shows that ‖Vν‖Lq(R) =
ν2−1/q ‖V ‖Lq(R) . Optimality is therefore achieved for Vν ∈ Lq(R) with ‖Vν‖Lq(R) = μ > 0 if and only if ν2−1/q = μ/μ1 and 
V (s) = V 1(s − s0) for some s0 ∈R, where

V 1,μ(s) = ν2 V 1(ν s) ∀ s ∈R with ν = (
μ/μ1

) q
2 q−1 .

The corresponding eigenfunction is, up to a multiplication by a constant, ϕμ(s) = ϕ(ν s). The lowest eigenvalue for V ∈ Lq(R)

such that ‖V ‖Lq(R) = μ, which realizes the equality in the Keller–Lieb–Thirring inequality, is λ1[V 1,μ] = λ1[V 1] ν2 = �R(μ). 
This completes the proof of Lemma 1. �

Next let us consider a function V of x = (s, z) ∈ C . Inspired by the results of [1,10] for Caffarelli–Kohn–Nirenberg in-
equalities, we can prove that V 1,μ , considered as a function on C , cannot be optimal for the Keller–Lieb–Thirring inequality 
on C if μ is large enough.

Lemma 3. With the above notations and assumptions, let V = V (s, z) be a nonnegative real valued potential in Lq(C) for some q > d/2
and let − λC1 [V ] be the lowest eigenvalue of the Schrödinger operator − ∂2

s − �g − V . If �R(μ) > 4 λM1 /(p2 − 4), then

sup
{
λC1 [V ] : V ∈ Lq(C) , ‖V ‖Lq(C) = μ

}
> �R(μ) ,

that is, the above maximization problem cannot be achieved by a potential V depending only on the variable s. The condition �R(μ) >
4 λM1 /(p2 − 4) is explicit and equivalent to μβ > μ

β

1 λM1 /(2 q − 1).

Proof. Let ϕμ be as in the proof of Lemma 1. We argue by contradiction and consider

φε(s, z) := ϕμ(s) + ε
(
ϕμ(s)

)p/2
ψ1(z) and Vε(s, z) := μ

|φε(s, z)|p−2

‖φε‖p−2
Lp(C)

.

Here ψ1 denotes an eigenfunction of − �g on M such that ‖ψ1‖L2(M) = 1 and − �gψ1 = λM1 ψ1. Then

‖∂sφε‖2
L2(C)

+ ‖∇gφε‖2
L2(C)

− μ‖φε‖2
Lp(C) − (‖∂sϕμ‖2

L2(R)
− μ‖ϕμ‖2

Lp(R)

)

= ε2

⎛
⎝λM1 ‖ϕμ‖p

Lp(R)
+ ‖∂sϕ

p/2
μ ‖2

L2(R)
− (p − 1)μ‖ϕμ‖2−p

Lp(R)

∫
R

ϕ
2 (p−1)
μ ds

⎞
⎠ + o(ε2) .

Since μ ‖ϕμ‖2−p
Lp(R)

ϕ
p−2
μ = V 1,μ(s) = ν2 V 1(ν s) with ν = (μ/μ1)

β as in the proof of Lemma 1, since χ = ϕp/2 solves

− ∂2
s χ − (p − 1) V 1 χ = −

( p

p − 2

)2
χ ,

and since (p − 1) q (q − 1) = 2 p (p−1)

(p−2)2 , we get that

‖∂sϕ
p/2
μ ‖2

L2(R)
− 2 p (p − 1)

(p − 2)2
ν2

∫
R

ϕ
2 (p−1)
μ ds = −ν2

( p

p − 2

)2 ‖ϕμ‖p
Lp(R)

.

We recall that ν2 = �R(μ)/(q − 1)2 = 1
4 (p − 2)2 �R(μ). According to [5, Appendix A], we see that

‖ϕμ‖p
Lp(R) = 4

p + 2
‖ϕμ‖2

L2(R)
and ‖φε‖2

L2(C)
=

(
1 + 4ε2

p + 2

)
‖ϕμ‖2

L2(R)
.

Hence we finally find that

−λC1 [Vε] + �R(μ) ≤ 4ε2

p + 2
(λM1 − 1

4 (p2 − 4)�R(μ)) + o(ε2) .

This shows that λ1[V 1,μ] − λC[Vε] < 0 is negative for ε > 0, small enough, if �R(μ) >
4 λM1

2 . �
1 p −4
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The condition found by V. Felli and M. Schneider in [10] can be recovered by noticing that λSd−1

1 = d −1, when M = S
d−1. 

In that case, the above computation are exactly equivalent to the computations for Caffarelli–Kohn–Nirenberg inequalities: 
see [5] for details.

3. Symmetry: a rigidity result

In this section we get a lower bound on μ� and complete the proof of Theorem 2. Let us define

J[V ] :=
‖V ‖q

Lq(C) − ‖∂s V (q−1)/2‖2
L2(C)

− ‖∇g V (q−1)/2‖2
L2(C)

‖V (q−1)/2‖2
L2(C)

.

We shall consider a critical point of J and prove that it is symmetric using a well-chosen perturbation.

Lemma 4. With the notations of Section 1 and under the assumptions of Theorem 2, we have

�(μ) = sup
{
J[V ] : ‖V ‖Lq(C) = μ

}
.

Sketch of the proof of Lemma 4. There exists a nonnegative potential V ∈ Lq ∩ C∞(C) such that J[V ] = �(μ). Lemma 4 is 
based on the equivalence of (KLT) and (GNS), which can also be seen by using u = V (q−1)/2 and considering the equality 
case in Hölder’s inequality. See [7] for more details. �

To any potential V ≥ 0 we associate the pressure function

pV (r) := r V (s)−
1
2 ∀ r = e−αs .

With α = 1
q−1

√
�R(μ), let us define

K[p] : = 2q − 1

2 q
α4

∫
R+×M

∣∣∣∣p′′ − p′

r
− �gp

α2 (2q − 1) r2

∣∣∣∣
2

p1−2q dμ

+ 2α2
∫

R+×M

1

r2

∣∣∣∣∇gp′ − ∇gp

r

∣∣∣∣
2

p1−2q dμ +
(

λ� − 2

q − 1
�R(μ)

) ∫
R+×M

|∇gp|2
r4

p1−2q dμ,

where dμ is the measure on R+ ×M with density r2q−1, and ′ denotes the derivative with respect to r.

Lemma 5. There exists a positive constant c such that, with the above notations, if V is a critical point of J under the constraint 
‖V ‖Lq(C) = μ, then K[pV ] = 0.

The sketch of the proof is as follows. Because V is critical point, we know that

0 = J′[V ] · V 1−q
[
∂s

(
e−2(q−1)αs ∂s

(
e(2q−1)αs V

2q−1
2

))
+ eαs �g V

2q−1
2

]
.

On the other hand, it has been shown in [7] that the r.h.s. is greater or equal than a positive constant times K[pV ].

Sketch of the proof of Theorem 2. If μ < μ� , then λ� − 2
q−1 �R(μ) is positive and we read from the expression of K[pV ] that 

pV depends only on r or, equivalently, V depends only on s. Up to scalings, translations and multiplications by a positive 
constant, we get that V = V 1 as defined in Lemma 1. �

Note that the constant λ� is an estimate of the largest constant λ such that∫
M

(
1
2 �g(|∇g f |2) − ∇g(�g f ) · ∇g f − 1

2q−1 (�g f )2 − λ |∇g f |2
)

f 1−2q dv g ≥ 0 ,

for any positive function f ∈ C3(M). It is estimated by λθ with θ ∈ [θ�, 1], according to [7]. In the case of the sphere, that is, 
M = S

d−1, we have that d−1
d−2 κ = λM1 and λθ = (

1 +δ d−1
d−2

)
κ = ( d−2

d−1 +δ
)
λM1 is independent of θ . Otherwise, by Lichnerowicz’ 

theorem, we know that d−1
d−2 κ ≤ λM1 . Hence θ �→ λθ is a non-increasing function, and since θ� is always negative, we have a 

simple lower bound for λ�:

λ� ≥ λ0 = κ + δ λM1 .
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