Functional analysis/Dynamical systems

Disjoint mixing linear fractional composition operators in the unit ball ${ }^{\text {た }}$

Mélange disjoint d'opérateurs de composition linéaires fractionnaires dans la boule unité

Zhong-Shan Fang ${ }^{\text {a }}$, Ze-Hua Zhou ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, PR China
${ }^{\text {b }}$ Department of Mathematics, Tianjin University, Tianjin 300072, PR China
c Center for Applied Mathematics, Tianjin University, Tianjin 300072, PR China

ARTICLE INFO

Article history:

Received 27 January 2014
Accepted after revision 9 July 2015
Available online 12 August 2015
Presented by the Editorial Board

Abstract

In the present paper, we investigate the disjoint mixing property of finitely many linear fractional composition operators acting on the space of holomorphic functions on the unit ball in \mathbb{C}^{N}, and generalize parts of the results obtained by Bès, Martin and Peris in 2011. © 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Dans la présente note, nous étudions la propriété de mélange disjoint pour un nombre fini d'opérateurs de composition linéaires fractionnaires agissant sur l'espace des fonctions holomorphes sur la boule unité de \mathbb{C}^{N}, et nous généralisons une partie des résultats obtenus par Bès, Martin et Peris en 2011.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let \mathbb{C}^{N} denote the N-dimensional complex space, for any $z=\left(z_{1}, z_{2}, \cdots, z_{N}\right)$ and $w=\left(w_{1}, w_{2}, \cdots, w_{N}\right)$ in \mathbb{C}^{N}; the inner product is defined by $\langle z, w\rangle=\sum_{i=1}^{N} z_{i} \overline{w_{i}}$, and $\|z\|^{2}=\langle z, z\rangle$.

Let \mathbb{B}_{N} be the unit ball of \mathbb{C}^{N}, with the boundary $\partial \mathbb{B}_{N}$. The class of all holomorphic functions on \mathbb{B}_{N} will be denoted by $H\left(\mathbb{B}_{N}\right)$. Let $\varphi(z)$ be a holomorphic self-map of \mathbb{B}_{N}, the composition operator is defined by $C_{\varphi}(f)(z)=f(\varphi(z))$ for any $f \in H\left(\mathbb{B}_{N}\right)$ and $z \in \mathbb{B}_{N}$. And each $u \in H\left(\mathbb{B}_{N}\right)$ induces an operator M_{u} on $H\left(\mathbb{B}_{N}\right)$ of pointwise multiplication by the weight symbol u. The weighted composition operator $u C_{\varphi}:=M_{u} C_{\varphi}: H\left(\mathbb{B}_{N}\right) \rightarrow H\left(\mathbb{B}_{N}\right)$, is defined by

$$
u C_{\varphi}(f)(z):=u(z)(f \circ \varphi)(z)
$$

[^0]For general references on the theory of composition operators, we refer the interested readers to the books [9,13].
Definition 1.1. An operator T on a topological vector space X is called supercyclic provided that there is some vector f in X whose projective orbit $\left\{\lambda T^{n} f: \lambda \in \mathbb{C}, n=0,1, \cdots\right\}$ is dense in X. Such f is called a supercyclic vector for T.

Definition 1.2. The supercyclic operators $T_{1}, \cdots, T_{m}(m \geq 2)$ on a topological space X are said to be d-supercyclic provided there is some $f \in X$ for which the vector $(f, \cdots, f) \in X^{m}$ is supercyclic for the direct sum operator $\bigoplus_{s=1}^{m} T_{s}$ acting on the product space X^{m}, endowed with the product topology.

Definition 1.3. The operators $T_{1}, \cdots, T_{m}(m \geq 2)$ on a topological space X are d-mixing provided for every open subsets U_{0}, \cdots, U_{m} of X there exists $n_{0} \in \mathbb{N}$ such that $\emptyset \neq U_{0} \bigcap T_{1}^{-n}\left(U_{1}\right) \bigcap \cdots \bigcap T_{m}^{-n}\left(U_{m}\right)$ for each $n \geq n_{0}$.

Definition 1.4. A map φ will be called a linear fractional map if $\varphi(z)=(A z+B)(\langle z, C\rangle+D)^{-1}$ where A is an $N \times N$ matrix, B and C are (column) vectors in \mathbb{C}^{N}, and D is a complex number.

For $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ is a linear fractional map, with no fixed points in \mathbb{B}_{N}. Then there exists a unique point $\tau \in \partial \mathbb{B}_{N}$ such that $\varphi(\tau)=\tau$ and $\left\langle\mathrm{d} \varphi_{\tau}(\tau), \tau\right\rangle=\alpha(\varphi)$ with $0<\alpha(\varphi) \leq 1$.

The point $\tau \in \partial \mathbb{B}_{N}$ is called the Denjoy-Wolff point of φ and $\alpha(\varphi)$ the boundary dilation coefficient of φ. We say that φ is hyperbolic if $\alpha(\varphi)<1$ while we say it parabolic if $\alpha(\varphi)=1$.

We recall that the Siegal upper half-plane \mathbb{H}_{N} is defined by

$$
\mathbb{H}_{N}=\left\{\left(w_{1}, \cdots, w_{n}\right)=\left(w_{1}, w^{\prime}\right) \in \mathbb{C}^{N}, \operatorname{Im}\left(w_{1}\right)>\left\|w^{\prime}\right\|^{2}\right\}
$$

Let $e_{1}=(1,0, \cdots, 0)=\left(1,0^{\prime}\right)$. The Cayley transform, defined by $\mathcal{C}(z)=\mathrm{i}\left(e_{1}+z\right) /\left(1-z_{1}\right)$ is a biholomorphic map of \mathbb{B}_{N} onto \mathbb{H}_{N}.

We say that Φ is a generalized Heisenberg translation of \mathbb{H}_{N} if it may be written as

$$
\Phi\left(w_{1}, w^{\prime}\right)=\left(w_{1}+2 \mathrm{i}\left\langle w^{\prime}, \gamma\right\rangle+b, w^{\prime}+\gamma\right)
$$

with $b \in \mathbb{C}, \gamma \in \mathbb{C}^{N-1} \backslash\{0\}$ and $\operatorname{Im}(b) \geq\|\gamma\|^{2}$. A generalized Heisenberg translation is an automorphism if and only if $\operatorname{Im}(b)=$ $\|\gamma\|^{2}$. Next, we give the following definition, which is a kind of generalized hyperbolic linear fractional self-map of \mathbb{B}_{N} as we usually met before. For brevity, we still call it as generalized hyperbolic linear fractional map.

Definition 1.5. Let $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ be a linear fractional map. We say that φ is a generalized hyperbolic linear fractional self-map of \mathbb{B}_{N}, if it is conjugate to a self-map of \mathbb{H}_{N} of the form

$$
\Phi_{0}\left(w_{1}, w^{\prime}\right)=\frac{1}{\lambda}\left(w_{1}+\frac{2}{\sqrt{\lambda}}\left\langle U w^{\prime}, d\right\rangle+c, \sqrt{\lambda} U w^{\prime}+d\right),\left(w_{1}, w^{\prime}\right) \in \mathbb{H}_{N}
$$

where $\lambda<1$ and $\lambda \operatorname{Im}(c)>|d|^{2}, U \in \mathbb{C}^{(N-1) \times(N-1)}$ is a unitary matrix.
As was shown in [11], up to conjugation with an automorphism of \mathbb{B}_{N}, we may assume that φ is conjugate with a map of the form

$$
\Phi\left(w_{1}, w^{\prime}\right)=\left(\lambda w_{1}+b, \sqrt{\lambda} U w^{\prime}\right)\left(w_{1}, w^{\prime}\right) \in \mathbb{H}_{N},
$$

where $b \in \mathbb{C}$ with $\operatorname{Im}(b)>0$, and $1 / \lambda$ is the boundary dilation coefficient of $\varphi, \lambda>1$. The map Φ has the attractive fixed point ∞ and an exterior fixed point.

Definition 1.6. Let $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ be a linear fractional map. We say that φ is an unstable parabolic linear fractional self-map of \mathbb{B}_{N}, if:
(i) φ has a unique fixed point τ in $\overline{\mathbb{B}_{N}}$, which is located on the boundary $\partial \mathbb{B}_{N}$;
(ii) the boundary dilation coefficient at τ is 1 ;
(iii) φ does not fix as a set any non-trivial affine subset of \mathbb{B}_{N}.

Note that the above φ fixes only e_{1} if and only if Φ is a linear fractional map of \mathbb{H}_{N} which fixes only ∞.
In the past two decades, many authors focused on the dynamics of weighted composition operator, for example, see [5, $4,2,3,7,8,11,10,14]$ and the related references therein. Recently, in [6], Bès, Martin and Peris showed the following theorem.

Theorem. Let $\varphi_{1}, \cdots, \varphi_{m}$ be linear fractional maps of the unit disk \mathbb{D}, where $m \geq 2$. The following are equivalent:
(a) the operators $C_{\varphi_{1}}, \cdots, C_{\varphi_{m}}$ are d-supercyclic on $H(\mathbb{D})$;
(b) the operators $\mu_{1} C_{\varphi_{1}}, \cdots, \mu_{m} C_{\varphi_{m}}$ are d-mixing on $H(\mathbb{D})$ for any non-zero scalars μ_{1}, \cdots, μ_{m};
(c) the symbols $\varphi_{1}, \cdots, \varphi_{m}$ have no fixed points in \mathbb{D}, and satisfy that if any two φ_{l}, φ_{j} have the same attractive fixed point α, then the expressions $\varphi_{l}^{\prime}(\alpha)=\varphi_{j}^{\prime}(\alpha)<1$ do not occur.

For the higher dimensional case, things will be a little bit difference. Some properties are not easily managed, we need some new methods and calculation techniques. In this paper, we will discuss the higher dimensional case, and our theorems generalize parts of the results obtained in [6].

2. Some lemmas

In this section, we present some lemmas that will be used in the proofs of our main results in the next section. We first give the generalization of Runge theorem to the several variables.

Lemma 2.1. (See [12, Theorem 4.24].) For a pseudoconvex open subset Ω of \mathbb{C}^{N}, a necessary and sufficient condition for the polynomial ring $\mathbb{C}[z]$ to be dense in $H(\Omega)$ is that, for every compact set $K \subset \Omega$, there exists a continuous plurisubharmonic exhaustion function φ defined on \mathbb{C}^{N} such that $K \subset\{z \mid \varphi(z)<0\} \subset \Omega$.

From the above lemma, we have the following lemma.

Lemma 2.2. The polynomial ring $\mathbb{C}[z]$ is dense in $H\left(\mathbb{B}_{N}\right)$.

Proof. Fix any given compact set $K \subset \mathbb{B}_{N}$, let ρ denote the distance from K to $\partial \mathbb{B}_{N}$. The continuous plurisubharmonic exhaustion function φ can be defined by

$$
\varphi(z)=\sum_{i=1}^{N} z_{i} \overline{z_{i}}-1+\rho / 2
$$

Then the lemma follows by Lemma 2.1.
Lemma 2.3. (See [1, Theorem 3.1].) Let φ be an unstable parabolic linear fractional map of \mathbb{B}_{N}. Then $\Phi:=\mathcal{C} \circ \varphi \circ \mathcal{C}^{-1}$ is a generalized Heisenberg translation.

Lemma 2.4. Assume that $\varphi_{j}: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}(j=1,2)$ are univalent with no fixed points in \mathbb{B}_{N}, and have different attractive fixed points. Then for any compact subset $K \subset \mathbb{B}_{N}$, there exists some sufficiently large n_{0}, whenever $n \geq n_{0}$, then $\varphi_{j}^{[n]}(K) \cap K=\emptyset$ and $\varphi_{1}^{[n]}(K) \cap \varphi_{2}^{[n]}(K)=\emptyset$, where $\varphi_{j}^{[n]}$ denotes the n-fold composition of φ_{j} with itself.

Proof. By Theorem 2.83 in [9], there exist different points $\xi_{j}(j=1,2)$ of norm 1 so that the iterates $\varphi_{j}^{[n]}$ of φ_{j} converge to ξ_{j} uniformly on compact subsets of \mathbb{B}_{N}. Given any compact set $K \subset \mathbb{B}_{N}$, let ρ_{1} denote the distance from K to $\partial \mathbb{B}_{N}$, and ρ_{2} denote the distance between ξ_{1} and ξ_{2}. Set $\rho=\min \left\{\rho_{1}, \rho_{2}\right\}$ and $U_{j}:=\left\{z \in \mathbb{B}_{N}:\left\|z-\xi_{j}\right\|<\rho / 2\right\}$, then there is some n_{j} such that, whenever $n \geq n_{j}$, we have $\varphi_{j}^{[n]}(K) \subset U_{j}$. Hence, whenever $n \geq n_{0}:=\max \left\{n_{1}, n_{2}\right\}$, then $\varphi_{j}^{[n]}(K) \cap K=\emptyset$ and $\varphi_{1}^{[n]}(K) \cap \varphi_{2}^{[n]}(K)=\emptyset$.

Lemma 2.5. Assume that φ_{1}, φ_{2} be generalized hyperbolic or unstable parabolic linear fractional maps of \mathbb{B}_{N} and $\varphi_{1} \neq \varphi_{2}$, let β_{1}, β_{2} be the attractive fixed points of φ_{1}^{-1} and φ_{2}^{-1}, respectively. If φ_{1}, φ_{2} have the same attractive fixed point τ, for $1 \leq j, l \leq 2$, then the following situations follows:
(i) if $\alpha\left(\varphi_{l}\right)=\alpha\left(\varphi_{j}\right)=1$, then

$$
\varphi_{l}^{[-n]} \circ \varphi_{j}^{[n]} \rightarrow \tau \text { locally uniformly on } \mathbb{B}_{N}
$$

(ii) if $\alpha\left(\varphi_{l}\right)<\alpha\left(\varphi_{j}\right)<1$, then

$$
\begin{aligned}
& \varphi_{l}^{[-n]} \circ \varphi_{j}^{[n]} \rightarrow \beta_{l} \text { locally uniformly on } \mathbb{B}_{N}, \text { and } \\
& \varphi_{j}^{[-n]} \circ \varphi_{l}^{[n]} \rightarrow \tau \text { locally uniformly on } \mathbb{B}_{N} ;
\end{aligned}
$$

(iii) if $\alpha\left(\varphi_{l}\right)<\alpha\left(\varphi_{j}\right)=1$, then

$$
\begin{aligned}
& \varphi_{l}^{[-n]} \circ \varphi_{j}^{[n]} \rightarrow \beta_{l} \text { locally uniformly on } \mathbb{B}_{N}, \text { and } \\
& \varphi_{j}^{[-n]} \circ \varphi_{l}^{[n]} \rightarrow \tau \text { locally uniformly on } \mathbb{B}_{N} .
\end{aligned}
$$

Proof. Without loss of generality, we assume that $\tau=e_{1}$.
Case i: $\alpha\left(\varphi_{l}\right)=\alpha\left(\varphi_{j}\right)=1$.
For $l=1,2$, upon conjugation with Cayley transform $\mathcal{C}(z)=\mathrm{i}\left(e_{1}+z\right) /\left(1-z_{1}\right)$, the maps $\Phi_{l}:=\mathcal{C} \circ \varphi_{l} \circ \mathcal{C}^{-1}$ have $\mathcal{C}\left(e_{1}\right)=\infty$ as an attractive fixed point and, by Lemma 2.3, we have:

$$
\Phi_{l}\left(w_{1}, w^{\prime}\right)=\left(w_{1}+2 \mathrm{i}\left\langle w^{\prime}, \gamma_{l}\right\rangle+b_{l}, w^{\prime}+\gamma_{l}\right)
$$

Straight calculation shows that

$$
\begin{aligned}
& \Phi_{l}^{-1}\left(w_{1}, w^{\prime}\right)=\left(w_{1}-b_{l}+2 \mathrm{i}\left|\gamma_{l}\right|^{2}-2 \mathrm{i}\left\langle w^{\prime}, \gamma_{l}\right\rangle, w^{\prime}-\gamma_{l}\right) \\
& \Phi_{l}^{[n]}\left(w_{1}, w^{\prime}\right)=\left(w_{1}+n b_{l}+2 n \mathrm{i}\left\langle w^{\prime}, \gamma_{l}\right\rangle+n(n-1) \mathrm{i}\left|\gamma_{l}\right|^{2}, w^{\prime}+n \gamma_{l}\right)
\end{aligned}
$$

and

$$
\Phi_{l}^{[-n]}\left(w_{1}, w^{\prime}\right)=\left(w_{1}-n b_{l}-2 n \mathrm{i}\left\langle w^{\prime}, \gamma_{l}\right\rangle+n(n+1) \mathrm{i}\left|\gamma_{l}\right|^{2}, w^{\prime}-n \gamma_{l}\right) .
$$

Thus

$$
\begin{aligned}
\Phi_{l}^{[-n]} \circ \Phi_{j}^{[n]}\left(w_{1}, w^{\prime}\right)= & \left(w_{1}+n\left(b_{j}-b_{l}\right)+2 n \mathrm{i}\left\langle w^{\prime}, \gamma_{j}-\gamma_{l}\right\rangle+n(n-1) \mathrm{i}\left|\gamma_{j}\right|^{2}+n(n+1) \mathrm{i}\left|\gamma_{l}\right|^{2}\right. \\
& \left.-2 n^{2} \mathrm{i}\left\langle r_{j}, r_{l}\right\rangle, w^{\prime}+n\left(\gamma_{j}-\gamma_{l}\right)\right) .
\end{aligned}
$$

So $\Phi_{l}^{[-n]} \circ \Phi_{j}^{[n]}\left(w_{1}, w^{\prime}\right) \rightarrow \infty$ locally uniformly on \mathbb{H}_{N}, and thus

$$
\varphi_{l}^{[-n]} \circ \varphi_{j}^{[n]} \rightarrow e_{1}=\mathcal{C}^{-1}(\infty)
$$

locally uniformly on $\mathbb{B}_{N}=\mathcal{C}^{-1}\left(\mathbb{H}_{N}\right)$.
Case ii: $1<\lambda_{1}=\frac{1}{\alpha\left(\varphi_{1}\right)}<\lambda_{2}=\frac{1}{\alpha\left(\varphi_{2}\right)}$.
From Definition 1.5, without loss of generality, suppose that for $j=1,2, \varphi_{j}$ fixes the point $\beta_{j}=\left(-r_{j}, 0^{\prime}\right)\left(r_{j}>1\right)$ outside $\overline{\mathbb{B}_{N}}$, with Denjoy-Wolff point $\tau=e_{1} \in \partial \mathbb{B}_{N}$, then Φ_{j} fixes the point $\xi_{j}=\left(\mathrm{i} \frac{1-r_{j}}{1+r_{j}}, 0^{\prime}\right)$ and

$$
\Phi_{j}\left(w_{1}, w^{\prime}\right)=\left(\lambda_{j} w_{1}+\left(1-\lambda_{j}\right) \mathrm{i} \frac{1-r_{j}}{1+r_{j}}, \sqrt{\lambda_{j}} U_{j} w^{\prime}\right), \quad\left(w_{1}, w^{\prime}\right) \in \mathbb{H}_{N} .
$$

By similar arguments as in [11] or Theorem 2.5 in [2], then the Φ_{j} is automorphism of the half-plane

$$
\Omega_{j}=\left\{\left(w_{1}, w^{\prime}\right) \in \mathbb{C} \times \mathbb{C}^{N-1}: \operatorname{Im}\left(w_{1}\right)>\left\|w^{\prime}\right\|^{2}+\frac{1-r_{j}}{1+r_{j}}\right\}
$$

And the Cayley transform \mathcal{C} is biholomorphic transform from the complex ellipsoid

$$
\Delta_{j}=\left\{\left(z_{1}, z^{\prime}\right) \in \mathbb{C} \times \mathbb{C}^{N-1}: \frac{\left|z_{1}-\frac{1-r_{j}}{2}\right|^{2}}{\left(\frac{1+r_{j}}{2}\right)^{2}}+\frac{\left\|z^{\prime}\right\|^{2}}{\frac{1+r_{j}}{2}}<1\right\}
$$

onto Ω_{j}, and $\mathbb{B}_{N} \subset \Delta_{j}, \mathbb{H}_{N} \subset \Omega_{j}$.
Now

$$
\Phi_{1}^{[-n]} \circ \Phi_{2}^{[n]}\left(w_{1}, w^{\prime}\right)=\left(\lambda_{1}^{-n}\left(\lambda_{2}^{n} w_{1}+\left(1-\lambda_{2}^{n}\right) \mathrm{i} \frac{1-r_{2}}{1+r_{2}}\right)+\left(1-\lambda_{1}^{-n}\right) \mathrm{i} \frac{1-r_{1}}{1+r_{1}}, \lambda_{1}^{-n} \lambda_{2}^{n}\left(U_{1}^{*}\right)^{n}\left(U_{2}\right)^{n} w^{\prime}\right)
$$

So $\Phi_{1}^{[-n]} \circ \Phi_{2}^{[n]}\left(w_{1}, w^{\prime}\right) \rightarrow \infty$ locally uniformly on \mathbb{H}_{N}, and $\varphi_{l}^{[-n]} \circ \varphi_{j}^{[n]} \rightarrow e_{1}=\mathcal{C}^{-1}(\infty)$ locally uniformly on \mathbb{B}_{N}. And

$$
\Phi_{2}^{[-n]} \circ \Phi_{1}^{[n]}\left(w_{1}, w^{\prime}\right)=\left(\lambda_{2}^{-n}\left(\lambda_{1}^{n} w_{1}+\left(1-\lambda_{1}^{n}\right) \mathrm{i} \frac{1-r_{1}}{1+r_{1}}\right)+\left(1-\lambda_{2}^{-n}\right) \mathrm{i} \frac{1-r_{2}}{1+r_{2}}, \lambda_{2}^{-n} \lambda_{1}^{n}\left(U_{1}^{*}\right)^{n}\left(U_{2}\right)^{n} w^{\prime}\right)
$$

then

$$
\Phi_{2}^{[-n]} \circ \Phi_{1}^{[n]}\left(w_{1}, w^{\prime}\right) \rightarrow\left(\mathrm{i} \frac{1-r_{2}}{1+r_{2}}, 0^{\prime}\right)
$$

locally uniformly on \mathbb{H}_{N}, thus $\varphi_{2}^{[-n]} \circ \varphi_{1}^{[n]} \rightarrow\left(-r_{2}, 0\right)=\mathcal{C}^{-1}\left(\left(\mathrm{i} \frac{1-r_{2}}{1+r_{2}}, 0^{\prime}\right)\right)$ locally uniformly on \mathbb{B}_{N}.
Case iii: $1=\lambda_{1}<\lambda_{2}$.
Note that

$$
\begin{aligned}
& \Phi_{1}^{[-n]}\left(w_{1}, w^{\prime}\right)=\left(w_{1}-n b_{1}-2 n \mathrm{i}\left\langle w^{\prime}, \gamma_{1}\right\rangle+n(n+1) \mathrm{i}\left|\gamma_{1}\right|^{2}, w^{\prime}-n \gamma_{1}\right) \\
& \Phi_{2}^{[n]}\left(w_{1}, w^{\prime}\right)=\left(\lambda_{2}^{n} w_{1}+\left(1-\lambda_{2}^{n}\right) \mathrm{i} \frac{1-r_{2}}{1+r_{2}}, \lambda_{2}^{\frac{n}{2}}\left(U_{2}\right)^{n} w^{\prime}\right) .
\end{aligned}
$$

Direct calculation shows that $\Phi_{1}^{[-n]} \circ \Phi_{2}^{[n]}\left(w_{1}, w^{\prime}\right) \rightarrow \infty$ locally uniformly on \mathbb{H}_{N}, thus $\varphi_{l}^{[-n]} \circ \varphi_{j}^{[n]} \rightarrow e_{1}$ locally uniformly on \mathbb{B}_{N}. Now

$$
\Phi_{2}^{[-n]}\left(w_{1}, w^{\prime}\right)=\left(\lambda_{2}^{-n} w_{1}+\left(1-\lambda_{2}^{-n}\right) \mathrm{i} \frac{1-r_{2}}{1+r_{2}}, \lambda_{2}^{-\frac{n}{2}}\left(U_{2}^{*}\right)^{n} w^{\prime}\right)
$$

and remember that

$$
\Phi_{1}^{[n]}\left(w_{1}, w^{\prime}\right)=\left(w_{1}+n b_{1}+2 n i\left\langle w^{\prime}, \gamma_{1}\right\rangle+n(n-1) \mathrm{i}\left|\gamma_{1}\right|^{2}, w^{\prime}+n \gamma_{1}\right)
$$

then

$$
\Phi_{2}^{[-n]} \circ \Phi_{1}^{[n]}\left(w_{1}, w^{\prime}\right) \rightarrow\left(\mathrm{i} \frac{1-r_{2}}{1+r_{2}}, 0^{\prime}\right)
$$

locally uniformly on \mathbb{H}_{N}, so $\varphi_{2}^{[-n]} \circ \varphi_{1}^{[n]} \rightarrow\left(-r_{2}, 0\right)$ locally uniformly on \mathbb{B}_{N}.

3. Main theorems

Proposition 3.1. Let φ_{1}, φ_{2} be generalized hyperbolic holomorphic linear fractional self-maps of \mathbb{B}_{N} defined in Definition 1.5 , with a common attractive fixed point τ, such that $\alpha\left(\varphi_{1}\right)=\alpha\left(\varphi_{2}\right)$, and different other fixed points outside $\overline{\mathbb{B}_{N}}$. Then $C_{\varphi_{1}}, C_{\varphi_{2}}$ are not d-supercyclic on $H\left(\mathbb{B}_{N}\right)$.

Proof. As discussion in Lemma 2.5, set $\lambda=\frac{1}{\alpha\left(\varphi_{1}\right)}=\frac{1}{\alpha\left(\varphi_{2}\right)}>1$, note that by our assumption we have $r_{1} \neq r_{2}$. Set $r_{1}<r_{2}$, and a straight calculation shows that

$$
\Phi_{j}^{[n]}\left(w_{1}, w^{\prime}\right)=\left(\lambda^{n} w_{1}+\left(1-\lambda^{n}\right) \mathrm{i} \frac{1-r_{j}}{1+r_{j}}, \lambda^{\frac{n}{2}}\left(U_{j}\right)^{n} w^{\prime}\right)
$$

and

$$
\Phi_{j}^{[-n]}\left(w_{1}, w^{\prime}\right)=\left(\lambda^{-n} w_{1}+\left(1-\lambda^{-n}\right) \mathrm{i} \frac{1-r_{j}}{1+r_{j}}, \lambda^{-\frac{n}{2}}\left(U_{j}^{*}\right)^{n} w^{\prime}\right)
$$

where U^{*} denotes the adjoint of the unitary matrix U. Hence,

$$
\Phi_{1}^{[-n]} \circ \Phi_{2}^{[n]}\left(w_{1}, w^{\prime}\right)=\left(w_{1}+\left(\frac{1-r_{2}}{1+r_{2}}-\frac{1-r_{1}}{1+r_{1}}\right) \mathrm{i}\left(\lambda^{-n}-1\right),\left(U_{1}^{*}\right)^{n}\left(U_{2}\right)^{n} w^{\prime}\right)
$$

Now suppose that $C_{\varphi_{1}}, C_{\varphi_{2}}$ are d-supercyclic on $H\left(\mathbb{B}_{N}\right)$, and let $f \in H\left(\mathbb{B}_{N}\right)$ be a d-supercyclic vector for $C_{\varphi_{1}}, C_{\varphi_{2}}$. Therefore, for $g \in H\left(\mathbb{B}_{N}\right)$ with $g(z)=z_{1}$, there exist an increasing sequence $\left(n_{k}\right)$ of positive integers and a sequence (μ_{k}) of non-zero scalars such that

$$
\mu_{k}\left(f \circ \varphi_{j}^{\left[n_{k}\right]}\right) \rightarrow g, k \rightarrow \infty
$$

in $H\left(\mathbb{B}_{N}\right)(j=1,2)$. Set $\Psi^{[n]}:=\varphi_{1}^{[-n]} \circ \varphi_{2}^{[n]}=\mathcal{C}^{-1} \circ \Phi_{1}^{[-n]} \circ \Phi_{2}^{[n]} \circ \mathcal{C}$, and let $z=\left(z_{1}, z^{\prime}\right) \in \mathbb{B}_{N}$ be fixed, $[\Psi]_{1}:=\lim _{n \rightarrow \infty}\left[\Psi^{[n]}\right]_{1}=$ $\frac{\left(1-z_{1}\right) \beta+2 z_{1}}{\left(1-z_{1}\right) \beta+2 \mathrm{i}}$, here $\left[\Psi^{[n]}\right]_{1}$ denotes the first component of $\Psi^{[n]}$ and $\beta=\mathrm{i}\left(\frac{1-r_{1}}{1+r_{1}}-\frac{1-r_{2}}{1+r_{2}}\right)$. Let $z \in \mathbb{B}_{N}$ be fixed, there exists $\epsilon>0$ such that $K_{\epsilon}=\left\{\left(w_{1}, w^{\prime}\right) \in \mathbb{B}_{N}:\left|w_{1}-[\Psi]_{1}(z)\right| \leq \epsilon\right\}$. Since that $\Phi_{1}^{[-n]} \circ \Phi_{2}^{[n]}$ are parabolic with $\operatorname{Im}(\beta)>0$, then map $\mathbb{H}_{\mathbb{N}}$ into $\mathbb{H}_{\mathbb{N}}$ when n is large enough, note that the Cayley transform is a biholomorphic map of $\mathbb{B}_{\mathbb{N}}$ onto $\mathbb{H}_{\mathbb{N}}$; we have $\Psi^{[n]}(z) \in K_{\epsilon}$ for n large enough. Notice that

$$
\lim _{k \rightarrow \infty}\left|\mu_{k}\left(f \circ \varphi_{1}^{\left[n_{k}\right]} \circ \Psi^{\left[n_{k}\right]}\right)-g \circ \Psi^{\left[n_{k}\right]}\right|(z) \leq \lim _{k \rightarrow \infty} \sup _{w \in K_{\epsilon}}\left|\mu_{k}\left(f \circ \varphi_{1}^{\left[n_{k}\right]}\right)-g\right|(w)=0 .
$$

We obtain

$$
\begin{aligned}
z_{1} & =g(z)=\lim _{k \rightarrow \infty} \mu_{k}\left(f \circ \varphi_{2}^{\left[n_{k}\right]}\right)(z) \\
& =\lim _{k \rightarrow \infty} \mu_{k}\left(f \circ \varphi_{1}^{\left[n_{k}\right]} \circ \Psi^{\left[n_{k}\right]}\right)(z) \\
& =\lim _{k \rightarrow \infty}\left(g \circ \Psi^{\left[n_{k}\right]}\right)(z)=[\Psi]_{1}(z)
\end{aligned}
$$

for each $z \in \mathbb{B}_{N}$, which is a contradiction.

Theorem 3.2. Let $m \geq 2$, and assume that $\varphi_{1}, \cdots, \varphi_{m}$ be generalized hyperbolic or unstable parabolic linear fractional maps of \mathbb{B}_{N}, and satisfy that if any two φ_{l}, φ_{j} have the same attractive fixed point τ, then the expression $\alpha\left(\varphi_{l}\right)=\alpha\left(\varphi_{j}\right)<1$ does not occur. And let $u_{1}, \cdots, u_{m} \in H\left(\mathbb{B}_{N}\right)$, with $u_{i}(z) \neq 0$ for every $z \in \mathbb{B}_{N}$ for each $1 \leq i \leq m$. Then the operators $u_{1} C_{\varphi_{1}}, \cdots, u_{m} C_{\varphi_{m}}$ are d-mixing on $H\left(\mathbb{B}_{N}\right)$.

Proof. Note that the compact-open topology on $H\left(\mathbb{B}_{N}\right)$ is independent of the chosen exhaustion. We set $K_{n}:=\left\{z \in \mathbb{B}_{N}\right.$: $\|z\| \leq 1-1 / n\}, n \in \mathbb{N}$, which is an exhaustion of \mathbb{B}_{N}, then we endow $H\left(\mathbb{B}_{N}\right)$ with the topology induced by the seminorms $p_{n}(f):=\sup _{z \in K_{n}}|f(z)|, f \in H\left(\mathbb{B}_{N}\right)$. Let U, V_{1}, \cdots, V_{m} be non-empty open subsets of $H\left(\mathbb{B}_{N}\right)$, and fix $f \in U, g_{j} \in V_{j}$, for $1 \leq j \leq m$. By the definition of the topology on $H\left(\mathbb{B}_{N}\right)$, there is a closed ball K centered on 0 and an $\epsilon>0$ such that a holomorphic function h belongs to U (or to V_{j}) whenever $\sup _{z \in K}|f(z)-h(z)|<\epsilon\left(\operatorname{or~}_{\sim}^{\sup } z_{z \in K}\left|g_{j}(z)-h(z)\right|<\epsilon\right.$, respectively). Let \widetilde{K} be a closed ball in \mathbb{B}_{N} such that $K \subset \widetilde{K}^{\circ} \subset \widetilde{K}$. Since $\varphi_{j}(1 \leq j \leq m)$ are univalent and without fixed points in \mathbb{B}_{N}, we know by Lemmas 2.4 and 2.5 that there exists n_{0} such that $\widetilde{K}, \varphi_{1}^{[n]}(\widetilde{K}), \cdots, \varphi_{m}^{[n]}(\widetilde{K})$ are pairwise disjoint, whenever $n \geq n_{0}$. Then the function f is holomorphic on some neighborhood of \widetilde{K}, and function $\frac{g_{j} \circ\left(\varphi^{[-n]}\right)}{\prod_{k=1}^{n}\left(u_{j} \circ\left(\varphi^{[-k]}\right)\right)}$ is holomorphic on some neighborhood of $\varphi_{j}^{[n]}(\widetilde{K})$. Since the compact set $\mathcal{K}:=\widetilde{K} \bigcup \varphi_{1}^{[n]}(\widetilde{K}) \bigcup \cdots \bigcup \varphi_{m}^{[n]}(\widetilde{K})$ is a polynomial hull and has connected complement, there exists a polynomial h such that

$$
\sup _{z \in \widetilde{K}}|f(z)-h(z)|<\epsilon \quad \text { and } \quad \sup _{y \in \varphi_{j}^{[n]}(\widetilde{K})}\left|\frac{g_{j} \circ\left(\varphi_{j}^{[-n]}\right)}{\prod_{k=1}^{n}\left(u_{j} \circ\left(\varphi_{j}^{[-k]}\right)\right)}(y)-h(y)\right|<\frac{\epsilon}{M_{j}},
$$

where

$$
M_{j}:=\max _{y \in \varphi_{j}^{[n]}(\widetilde{K})}\left|\prod_{k=1}^{n}\left(u_{j} \circ\left(\varphi_{j}^{[-k]}\right)\right)(y)\right| .
$$

Hence for each $1 \leq j \leq m$ and $n \geq n_{0}$,

$$
\sup _{z \in K}|f(z)-h(z)|<\epsilon
$$

and

$$
\begin{aligned}
& \sup _{z \in K}\left|g_{j}(z)-\left(u_{j} C_{\varphi_{j}}\right)^{n} h(z)\right| \\
& \quad=\sup _{z \in K}\left|\prod_{k=1}^{n}\left(u_{j} \circ\left(\varphi_{j}^{[-k]}\right)\right)(y)\left(\frac{g \circ\left(\varphi_{j}^{[-n]}\right)}{\prod_{l=1}^{n}\left(u_{j} \circ\left(\varphi_{j}^{[-l]}\right)\right)}(y)-h(y)\right)\right|<\epsilon,
\end{aligned}
$$

where $y:=\varphi^{[n]}(z)$. This shows that $h \in U$ and $\left(u_{j} C_{\varphi_{j}}\right)^{n} h \in V_{j}$, that is, the operators $u_{1} C_{\varphi_{1}}, \cdots, u_{m} C_{\varphi_{m}}$ are d-mixing on $H\left(\mathbb{B}_{N}\right)$.

References

[1] F. Bayart, A class of linear fractional maps of the ball and its composition operators, Adv. Math. 209 (2007) 649-665.
[2] F. Bayart, S. Charpentier, Hyperbolic composition operators on the ball, Trans. Amer. Math. Soc. 365 (2013) 911-938.
[3] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, UK, 2009.
[4] J. Bès, Dynamics of composition operators with holomorphic symbol, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 107 (2) (2013) $437-449$.
[5] J. Bès, Dynamics of weighted composition operators, Complex Anal. Oper. Theory 8 (1) (2014) 159-176.
[6] J. Bès, Ö. Martin, A. Peris, Disjoint hypercyclic linear fractional composition operators, J. Math. Anal. Appl. 381 (2011) 843-856.
[7] P.S. Bourdon, J.H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 596 (125) (1997) 1-150.
[8] R.Y. Chen, Z.H. Zhou, Hypercyclicity of weighted composition operators on the unit ball of C^{N}, J. Korean Math. Soc. 48 (5) (2011) $969-984$.
[9] C.C. Cowen, B.D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, USA, 1995.
[10] K.G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos, Universitext, Springer-Verlag, 2011.
[11] L. Jiang, C. Ouyang, Cyclic behavior of linear fractional composition operators in the unit ball of \mathbb{C}^{N}, J. Math. Anal. Appl. 341 (2008) $601-612$.
[12] T. Ohsawa, Analysis of Several Complex Variables, Translations of Mathematical Monographs, Amer. Math. Soc., 2002.
[13] J.H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
[14] B. Yousefi, H. Rezaei, Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc. 135 (10) (2007) 3263-3271.

[^0]: 해 The work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11371276; 11401431) and by Tianjin City High School Science and Technology Fund Planning Project (Grant No. 20141002).

 E-mail addresses: fangzhongshan@aliyun.com (Z.-S. Fang), zehuazhoumath@aliyun.com, zhzhou@tju.edu.cn (Z.-H. Zhou).
 http://dx.doi.org/10.1016/j.crma.2015.07.005
 1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

