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Let f (x) = ∑
�∈Z a�e2iπ�x, where 

∑
k≥1 a2

k d(k) < ∞ and d(k) = ∑
d|k 1 and let fn(x) =

f (nx). We show by using a new decomposition of squared sums that, for any K ⊂ N

finite, ‖ ∑k∈K ck fk‖2
2 ≤ (

∑∞
m=1 a2

md(m)) 
∑

k∈K c2
k d(k2). If f s(x) = ∑∞

j=1
sin 2π jx

js , s > 1/2, by 
only using elementary Dirichlet convolution calculus, we show that for 0 < ε ≤ 2s − 1, 
ζ(2s)−1‖ ∑k∈K ck f s

k ‖2
2 ≤ 1+ε

ε (
∑

k∈K |ck|2σ1+ε−2s(k)), where σh(n) = ∑
d|n dh . From this, we 

deduce that if f ∈ BV(T), 〈 f , 1〉 = 0 and 
∑∞

k=1 c2
k

(log log k)4

(log log log k)2 < ∞, then the series 
∑

k ck fk

converges almost everywhere. This slightly improves a recent result, depending on a fine 
analysis on the polydisc ([1], th. 3) (nk = k), where it was assumed that 

∑∞
k=1 c2

k (log log k)γ

converges for some γ > 4.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit f (x) = ∑
�∈Z a�e2iπ�x telle que la série 

∑
k≥1 a2

k d(k) où d(k) = ∑
d|k 1 converge, et soit 

fn(x) = f (nx). Nous montrons à l’aide d’une nouvelle décomposition des sommes carrées 
que ‖ ∑k∈K ck fk‖2

2 ≤ (
∑∞

m=1 a2
md(m)) 

∑
k∈K c2

k d(k2), pour tout ensemble fini d’entiers K . 
Si f s(x) = ∑∞

j=1
sin 2π jx

js , s > 1/2, nous montrons aussi, par un calcul simple sur les 
convolutions de Dirichlet, que ζ(2s)−1‖ ∑k∈K ck f s

k ‖2
2 ≤ 1+ε

ε (
∑

k∈K |ck|2σ1+ε−2s(k)), où 0 <
ε ≤ 2s − 1 et σh(n) = ∑

d|n dh . Nous en déduisons que, pour tout f ∈ BV(T) telle que 
〈 f , 1〉 = 0, si la série 

∑∞
k=1 c2

k
(log log k)4

(log log log k)2 converge, alors la série 
∑

k ck fk converge presque 
partout. Cela améliore un résultat récent, dépendant d’une analyse fine sur le polydisque 
([1], th. 3) (nk = k), où l’on suppose que la série 

∑∞
k=1 c2

k (log log k)γ converge pour un réel 
γ > 4.
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1. Introduction – main result

One of the oldest and most central problems in the theory of systems of dilated sums is the study of the convergence in 
norm or almost everywhere of the series 

∑∞
k=1 ck f (nkx), where f is a periodic function f and N = {nk, k ≥ 1} a sequence 

of positive integers (see [3]). Our main concern is the search of individual conditions ensuring convergence, a barely inves-
tigated part of the theory. We use an arithmetical approach based on elementary Dirichlet convolution calculus and on a 
new decomposition of squared sums, continuing the work in [7,4]. We show that this approach is strong enough to recover 
and even slightly improve a recent a.e. convergence result [1] (Theorem 3) in the case N = N without using analysis on 
the polydisc. Results in [1] were recently developed in [2]. Our approach is also in the spirit of the work of Hilberdink [5]
on some arithmetical mappings and extrema linked to arithmetical functions, with applications to �-results of the Riemann 
Zeta function. Denote e(x) = e2iπx , en(x) = e(nx), n ≥ 1. Let T = R/Z = [0, 1[. Let f (x) ∼ ∑∞

j=1 a je j(x). Let fn(x) = f (nx), 
n ∈N. We assume throughout that

f ∈ L2(T), 〈 f ,1〉 = 0. (1)

A key preliminary step naturally consists in searching bounds of ‖ 
∑

k∈K ck fk‖2 integrating in their formulation the arith-
metical structure of K . That question has received a satisfactory answer only for specific cases. We state our mean results. 
Let d(n) be the divisor function, namely the number of divisors of n. Throughout, K denotes a finite set of natural numbers.

Theorem 1.1. Assume that 
∑∞

m=1 a2
md(m) < ∞. Then,

∥∥∑
k∈K

ck fk
∥∥2

2 ≤ ( ∞∑
m=1

a2
md(m)

)∑
k∈K

c2
k d(k2).

In [7], using Hooley’s Delta function, we recently showed a similar estimate however restricted to sets K such that 
K ⊂]er, er+1] for some integer r. Theorem 1.1 is deduced from a more general result. Introduce the necessary notation. Let 
Ak = ∑∞

ν=1 a2
νk . Let ζh be defined by ζh(n) = nh for all positive n. Let θ(n) denotes the number of squarefree divisors of n. 

Given K ⊂ N, we note F (K ) = {d ≥ 1; ∃k ∈ K : d|k}. If K is factor closed (d|k ⇒ d ∈ K for all k ∈ K ), then F (K ) = K .

Theorem 1.2. Let ψ be any arithmetical function taking only positive values. Then,

∥∥∑
k∈K

ck fk
∥∥2

2 ≤ B
∑
k∈K

c2
kψ ∗ ζ0(k), where B = sup

d∈F (K )

(∑
k∈K
d|k

A k
d

ψ( k
d )

θ(
k

d
)
)
< ∞.

Here ∗ denotes the Dirichlet convolution. By choosing ψ = θ and since ψ ∗ ζ0(k) = d(k2), we check that B ≤∑∞
m=1 a2

md(m), whence Theorem 1.1. Consider now the class of functions introduced in [6], f s(x) = ∑∞
j=1

sin 2π jx
js , s > 1/2

and recall that 〈 f s
k , f s

� 〉 = ζ(2s) (k,�)2s

ks�s where (k, �) = gcd(k, �).

Theorem 1.3. Let s > 0, 0 ≤ τ ≤ 2s. Let also ψ1(u) > 0 be non-decreasing and σu(k) = ∑
d|k du . Then,

∑
k,�∈K

ckc�

(k, �)2s

ks�s
≤ ( ∑

u∈F (K )

1

ψ1(u)στ (u)

)( ∑
ν∈K

c2
νψ1(ν)στ−2s(ν)

)
.

In particular,

∑
k,�∈K

ckc�

(k, �)2s

ks�s
≤ M(K )

(∑
k∈K

|ck|2στ−2s(k)
)

with M(K ) =
∑

k∈F (K )

1

στ (k)
.

Remark 1. Let s > 1/2, 0 < ε ≤ 2s − 1 and take τ = 1 + ε. Then

ζ(2s)−1
∥∥∑

k∈K

ck f s
k

∥∥2
2 ≤ 1 + ε

ε

(∑
k∈K

|ck|2σ1+ε−2s(k)
)
.

We use Theorem 1.3 to prove (with no analysis on the polydisc as in [1]) the following almost everywhere convergence 
results for functions with bounded variation.
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Theorem 1.4. Let f ∈ BV(T), 〈 f , 1〉 = 0. Assume that

∑
k≥3

c2
k

(log log k)4

(log log log k)2
< ∞. (2)

Then the series 
∑

k ck fk converges almost everywhere.

Remark 2. This slightly improves Theorem 3 in [1] (nk = k), where it was assumed that the series 
∑∞

k=1 c2
k (log log k)γ

converges for some γ > 4.

We will also prove the following rather delicate result where multipliers have arithmetical factors.

Theorem 1.5. Let f ∈ BV(T), 〈 f , 1〉 = 0. Assume that for some real b > 0,
∑
k≥3

c2
k (log log k)2+bσ−1+ 1

(log log k)b/3
(k) < ∞. (3)

Then the series 
∑

k ck fk converges almost everywhere.

These results and some others, notably on the Riemann Zeta function, are proved in [8].
In particular, the following �-result is established.

Theorem 1.6. Let σ > 1/2. There exist a positive constant cσ depending on σ only and a positive absolute constant c, such that for 
any integer ν ≥ 2 such that max[k,�]|ν (k∨�)

(k,�)
≥ cσ , and 0 ≤ ε < σ , we have

max
1≤t≤T

|ζ(σ + it)| ≥ cζ(2σ)
( 1

σ−2ε(ν)

∑
n|ν

σ−s+ε(n)2

n2ε

)1/2
,

whenever ν and T are such that

σ−ε(ν)σ1−σ−ε(ν) log(νT )
∑

n|ν
σ−s+ε(n)2

n2ε

≤ ζ(2σ)1/2

4
T (2σ−1).

By taking ν a product of primes, it is easy to recover Theorem 3.3 in [5].
We only sketch the proof of Theorem 1.4, which uses Theorem 1.3.

2. Proof of Theorem 1.4

Choose N j = ee jB

, with B = 2β/δ and δ is a (small) positive real. Let β > 1. Write
∑

N j≤k<N j+1

ck fk =
∑

N j≤k<N j+1

ck R J
k +

∑
N j≤k<N j+1

ckr J
k ,

where R J (x) = ∑ J
�=1

sin 2π�x
�

, r J (x) = f (x) − R J (x) ( J being defined later as a function of j). As f ∈ BV(T), a j =O( j−1), and 
so by Carleson–Hunt’s maximal inequality,

∥∥ sup
N j≤u≤v≤N j+1

∣∣ ∑
u≤k≤v

ck Rk
∣∣∥∥

2 ≤ C(log J )
( ∑

N j≤u≤N j+1

c2
k

)1/2
.

We now combine our Theorem 1.3 with the (ε, 1 − ε) argument introduced in [1]. Let 0 < ε < 1/2. From the bound

δ
J

k,�
:=

∑
i, j> J
jk=i�

1

i j
≤ C min

( (k, �)

(k ∨ �) J
,
(k, �)2

k�

) ≤ C
( (k, �)

(k ∨ �) J

)ε( (k, �)2

k�

)1−ε ≤ C

Jε
〈 f 1−ε/2

k , f 1−ε/2
� 〉,

and since 
∥∥∑

u≤k≤v ckr J
k

∥∥2
2 = ∑

u≤k,�≤v ckc�δ
J

k,�
, we get, choosing τ = 1 + ε, next using Gronwall’s estimate,

∥∥ ∑
ckr J

k

∥∥2
2 ≤ C

Jε
∥∥ ∑

|ck| f 1−ε/2
k

∥∥2
2 ≤ C

ε Jε
( ∑

c2
kσ−1+2ε(k)

) ≤ C

ε Jε
exp

{ �

2ε

(log N j+1)
2ε

log log N j+1

}
,

u≤k≤v u≤k≤v u≤k≤v
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where � is some positive number. By a well-known variant of Rademacher–Menshov’s maximal inequality,

∥∥ sup
N j≤u≤v≤N j+1

∣∣ ∑
u≤k≤v

ckr J
k

∣∣∥∥2
2 ≤ C

ε Jε
(log N j+1)

2 exp
{ �

2ε

(log N j+1)
2ε

log log N j+1

}( ∑
N j≤k≤N j+1

c2
k

)
.

Choose ε J ε = (log N j+1)
2 exp

{�
ε

(log N j+1)2ε

log log N j+1

}
with ε = log log log N j+1

2 log log N j+1
. Then log J ≤ C

(log log N j+1)2

(log log log N j+1)
, and by combining

∥∥ sup
N j≤u≤v≤N j+1

∣∣ ∑
u≤k≤v

ck fk
∣∣∥∥2

2 ≤ C
∑

N j≤u≤N j+1

c2
k

(log log k)4

(log log log k)2
. (4)

The assumption made implies that the oscillation of the sequence {∑N
k=1 ck fk, N ≥ 1} around the subsequence {∑N j

k=1 ck fk,

j ≥ 1} tends to zero almost everywhere. Now, by Tchebycheff’s inequality,

λ
{

sup
N j≤u≤v≤N j+1

∣∣ ∑
u≤k≤v

ckr J
k

∣∣ > j−β
}

≤ C j2β
∑

N j≤k≤N j+1

c2
k ≤ C

∑
N j≤u≤N j+1

c2
k (log log k).

Borel–Cantelli’s lemma implies that the series 
∑

j | 
∑

N j<u≤N j+1
ckr J

k | converges almost everywhere. The treatment of the 
other sum is more tricky. Let h and H be such that J h < N j ≤ J h+1 ≤ . . . ≤ J h+H−1 ≤ N j+1 < J h+H . One first observe that

∥∥ ∑
N j<k≤N j+1

ck R J
k

∥∥2
2 ≤ ζ(2)

∑
N j<k,�≤N j+1
(k∨�)≤ J (k∧�)

|ck||c�| (k, �)2

k�
≤ (

4ζ(2) log J
) H∑
μ=h

∑

Jμ−1≤k≤ Jμ+2

c2
kσ−1(k)

≤ C
∑

J−1 N j<k≤N j+1 J 2

c2
k

(log log k)2

log log log k
σ−1(k). (5)

By Tchebycheff’s inequality,

λ
{∣∣ ∑

N j<k≤N j+1

ck R J
k

∣∣ > j−β
}

≤ C j2β
∑

J−1 N j<k≤N j+1 J 2

c2
k

(log log k)2

log log log k
σ−1(k)

≤ C
∑

J−1 N j<k≤N j+1 J 2

c2
k
(log log k)2+δ

log log log k
σ−1(k).

Treating separately sums with odd indices and sums with even indices allows us to show, by Borel–Cantelli’s lemma, that 
the series∑

j

∣∣ ∑
N j<k≤N j+1

ck R J
k

∣∣

converges almost everywhere. This allows us to conclude.

Final note. In a very recent work, Lewko and Radziwill (arXiv:1408.2334v1) proposed a new approach to Gál’s theorem. 
They could also reduce the condition γ > 4 in Remark 2 to γ > 2. This naturally includes our Theorem 1.4, but not our Theo-
rem 1.5 with arithmetical multipliers. Further, the new argument we introduced in the proof of Theorem 1.4 suggests a pos-
sibility to improve Lewko and Radziwill’s convergence condition by requiring only that 

∑
k c2

k (log log k)2/(log log log k)2 < ∞.
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