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The reduced Kronecker coefficients are particular instances of Kronecker coefficients, that 
nevertheless contain enough information to compute all Kronecker coefficients from them. 
In this note, we compute the generating function of a family of reduced Kronecker 
coefficients. We show that these reduced Kronecker coefficients count plane partitions. This 
allows us to check that these coefficients satisfy the saturation conjecture, and that they 
are weakly increasing. Thanks to its generating function, we can describe our family by a 
quasipolynomial, specifying its degree and period.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les coefficients de Kronecker réduits sont des coefficients de Kronecker particuliers, 
qui permettent néanmoins de recalculer tous les coefficients de Kronecker. Dans cette 
note, nous calculons la fonction génératrice d’une famille particulière de coefficients de 
Kronecker réduits. Nous exprimons sa relation avec les partitions planes, ce qui nous 
permet de vérifier que cette famille possède la propriété de saturation, ainsi que la 
propriété de monotonie. Grâce à cette fonction génératrice, nous pouvons décrire les 
coefficients considérés au moyen d’une formule quasi polynomiale, dont nous précisons 
le degré et la période.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

With the original aim of trying to understand the rate of growth experienced by the Kronecker coefficient as we increase 
the sizes of its rows, we investigate the family of reduced Kronecker coefficients g(k)

(ka),(kb)
.

The Kronecker coefficient are the multiplicities appearing in the decomposition into irreducible of the tensor product 
of two irreducible representations of the symmetric group. They also appear naturally in the study of the general lineal 
group and the unitary group. The reduced Kronecker coefficients, on the other hand, are particular instances of Kronecker 
coefficients, believed to be simpler to understand than the Kronecker coefficients, but that contain enough information to 
recover them.
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In Theorem 1 we compute the generating function Fa,b = ∑
k g(k)

(ka),(kb)
xk . We achieve this by giving an explicit bijection 

between a family of colored partitions, and the Kronecker tableaux of Orellana and Ballantine, [1]. Since Fa,b turns out to 
be rational, these coefficients obey a lineal recurrence.

In Theorem 5 we give an striking connection to plane partitions: the reduced Kronecker coefficient g(k)

(ka),(ka)
counts the 

number of plane partitions of k fitting on a 2 × a rectangle. We obtain this result by comparing the generating function 
obtained in Theorem 1 with MacMahon’s classical formula. For instance, the reduced Kronecker coefficient for a = 4 and 
k = 3 is g(3)

(3,3,3,3),(3,3,3,3) = 5, and there are 5 plane partitions of 3 fitting inside an 2 × 4 rectangle:

These results imply that this family of coefficients satisfies the saturation conjecture for the reduced Kronecker coeffi-
cients of Kirillov and Klyachko, and that they are weakly increasing. Finally we go back to our original aim. In Theorem 7, 
we show that the family g(k)

(ka),(ka)
is described by a quasipolynomial of degree 2a − 1 and period dividing the least common 

multiple of 1, 2, . . . , a + 1.
In a different context, plane partitions have appeared in the study of the Kronecker coefficients on the work of E. Vallejo, 

see [12].

2. Reduced Kronecker coefficients

In 1938 Murnaghan observed that the Kronecker coefficients gλ
μ,ν always stabilize when we increase the sizes of the 

first parts of the three labeling partitions, see [10] and [11]. For example, the sequence g(k,2,2,1)

(k,3,2),(k−1,4,2)
= 18, 35, 40, 40, . . . , 

defined for k ≥ 5, has 40 as its stable value.
Denote by α[n] the sequence of integers defined by prepending a first part of size n − |α| to α, then the reduced 

Kronecker coefficient gγ
αβ is defined to be the stable limit of the sequence gγ [n]

α[n]β[n] .
The reduced Kronecker coefficients are interesting objects of their own right. Littlewood observed that when |α| +

|β| = |γ |, they coincide with the Littlewood–Richardson coefficient. They have be shown to contain enough information to 
recover from them the Kronecker coefficients, [3]. Recently, the reduced Kronecker coefficients have been used to investigate 
the rate of growth of the Kronecker coefficients, [4].

Murnaghan noticed that not only each particular sequence gγ [n]
α[n]β[n] stabilizes, but that the Kronecker product 

sα[n] ∗ sβ[n] , written in the Schur basis, is also stable. Moreover, in [3, Theorem 1.2], it is proved that the Kronecker 
product sα[n] ∗ sβ[n] stabilizes at stab(α, β) = |α| + |β| + α1 + β1. Therefore, if n ≥ stab(α, β, γ ), with stab(α, β, γ ) =
min{stab(α, β), stab(α, γ ), stab(β, γ )}, we have that gγ

αβ = gγ [n]
α[n]β[n] .

3. The generating function of a family of reduced Kronecker coefficient

We compute the generating function for a special family of reduced Kronecker coefficients.

Theorem 1. Fix integers a ≥ b ≥ 0. Consider the sequence of reduced Kronecker coefficients 
{

g(k)

(ka),(kb)

}
k≥0

.

1. If a = b, the generating function for the reduced Kronecker coefficients g(k)

(ka),(ka)
is

Fa,a = 1

(1 − x) · (1 − x2)2 · · · (1 − xa)2 · (1 − xa+1)

2. If a = b + 1, then g(k)

(ka),(kb)
= 1 for all k ≥ 0. That is Fb+1,b = 1

1−x .

3. If a > b + 1, g(k)

(ka),(kb)
= 0, except for k = 0 that it is 1.

A SSYT of shape λ/α and type ν/α such that it reverse reading word is an α-lattice permutation is called a Kronecker 
tableau of shape λ/α and type ν/α if either α1 = α2, or α1 > α2 and any one of the following two conditions is satisfied: 
the number of 1’s in the second row of λ/α is exactly α1 − α2 or the number of 2’s in the first row of λ/α is exactly 
α1 − α2. Let kλ

αν denote total number of Kronecker tableaux of shape λ/α and type ν/α.
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Lemma 2. (See Thm. 3.2(a) [1].) Let n and p be positive integers such that n ≥ 2p. Let λ = (λ1, . . . , λ�(λ)) and ν be partitions of n. If 
λ1 ≥ 2p − 1, then g(n−p,p)

λ,ν =
∑
α�p

α⊆λ∩ν

kλ
αν .

Finally, the reduced Kronecker coefficient g(k)

(ka),(ka)
is equal to the Kronecker coefficient g(k)[N]

(ka)[N],(ka)[N] , when N ≥
stab(λ, μ, ν). Therefore, g(k)

(ka),(ka)
is equal to the number of Kronecker tableaux of shape (3k, ka)/α and type (3k, ka)/α, 

where α is a partition of k.
Since Fa,a is the generating function for colored partitions with parts in A = {

1,2, 2, . . . ,a,a,a + 1
}

(i.e. weakly de-
creasing sequences of integers, ordered by saying that ī < i, and such that both entries i and ī have weight i), it suffices to 
define a bijection between colored partitions with parts in A, and Kronecker tableaux counted by g(k)

(ka),(ka)
.

The following algorithm defines a bijection between colored partitions of k with parts in A, and Kronecker tableaux 
of shape (3k, ka)/α and type (3k, ka)/α, where α is a partition of k. With a colored partition β of k with parts in A, 
we associate a Kronecker tableau T (β) as follows. First, we identify each element of A to a column of height a + 1: if 
i ∈ {2, 3, . . . , a − 1, a} then

Note that it is always possible to order the columns corresponding to the parts of β in such a way that we obtain a 
SSYT. If we write β as 

(
1m1 2m2 2m2 . . .a + 1ma+1

)
, then mi will denote the number of times that the column i appears in the 

tableau that we are building. We read the partition α from our SSYT by counting the number of blue boxes in each row: 
αa+1 = ma+1, αi = αi+1 + mi + mī for i = 2, . . . , a, and α1 = α2 + m1̄ .

This SSYT defines the first columns of T (β). We build the rest of the Kronecker tableau of shape (3k, ka)/α as follows: 
complete the ith row with entry i, for i = 2, . . . , a + 1, and the first row with the remaining numbers of the type (3k, ka)/α
in weakly increasing order from left to right.

For instance, for a = 3, and β = (2, 1), T (β) equals a Kronecker tableau with λ = ν = (9, 3, 3, 3) and 
α = (2, 1). This map is well defined and bijective. To conclude the proof, we show that in the other two cases, there is at 
most one Kronecker tableau that satisfies all requirements.

4. Plane partitions and reduced Kronecker coefficients

In this section we establish a link between the family of reduced Kronecker coefficients g(k)

(ka),(ka)
and plane partitions. 

A plane partition is a finite subset P of positive integer lattice points, {(i, j, k)} ⊂ N
3, such that if (r, s, t) lies in P and if 

(i, j, k) satisfies that 1 ≤ i ≤ r, 1 ≤ j ≤ s and 1 ≤ k ≤ t , then (i, j, k) also lies in P . Let B(r, s, t) be the set of plane partitions 
fitting in an r × s rectangle and with biggest part equal to t . That is, B(r, s, t) = {(i, j,k) | 1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ k ≤ t}. As 
an illustration we present a plane partition in B(4, 4, 5),

We show that the generating function for the reduced Kronecker coefficients, obtained in Theorem 1, coincides with the 
classical generating functions for plane partitions.
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Theorem 3. (See P. MacMahon, [9].) The generating function for plane partitions in B(r, s, t) is

ppt(x; r, s) =
r∏

i=1

s∏
j=1

1 − xi+ j+t−1

1 − xi+ j−1

Since 1−xl+k

1−xl = 1 + xl + · · · + x

⌊
k
l

⌋
l +O(k + 1), for all l ≥ 1, this generating function for plane partitions can be rewritten 

as a generating function computed resembling the one appearing in Theorem 1.

Lemma 4. Let r = min(a, l) and s = max(a, l). Then, the generating function for the plane partitions fitting inside an l × a rectangle is

s∏
j=r

(
1

1 − x j

)r

·
r−1∏
i=1

(
1

1 − xi

)i ( 1

1 − xs+i

)r−i

From this we conclude that the reduced Kronecker coefficients g(k)

(ka),(ka)
count plane partitions.

Theorem 5. The reduced Kronecker coefficient g(k)

(ka),(ka)
counts the number of plane partitions of k fitting inside a 2 × a rectangle.

5. Consequences

5.1. Saturation hypothesis

Let denote by {C(α1, . . . , αn)} any family of coefficients depending on the partitions α1, . . . , αn . The family {C(α1, . . . ,
αn)} satisfies the saturation hypothesis if the conditions C(α1, . . . , αn) > 0 and C(s · α1, . . . , s · αn) > 0 for all s > 1 are 
equivalent, where s · α = (sα1, sα2, . . .).

The Littlewood–Richardson coefficients satisfy the saturation hypothesis, as Knutson and Tao show in [8]. On the other 
hand, the Kronecker coefficients are known not to satisfy it. For example g(n,n)

(n,n),(n,n) is equal to 1 if n is even, and to 0
otherwise, see [2].

In [7] and [6], Kirillov and Klyachko have conjectured that the reduced Kronecker coefficients satisfy the saturation 
hypothesis. From the combinatorial interpretation for the reduced Kronecker coefficients g(k)

(ka),(ka)
in terms of plane partitions 

we verify their conjecture for our family of coefficients.

Corollary 6. The saturation hypothesis holds for the coefficients g(k)

(ka),(ka)
. In fact, g(sk)

((sk)a),((sk)a)
> 0 for all s ≥ 1. Moreover, the se-

quences of coefficients obtained by, either fixing k or a, and then letting the other parameter grow, are weakly increasing.

5.2. Quasipolynomiality

In Theorem 1, we computed the generating function Fa,b for the reduced Kronecker coefficients. In this section, we study 
the implications of this calculation. We concentrate on the non-trivial case, a = b.

Theorem 7. Let Fa =Fa,a be the generating function for the reduced Kronecker coefficients g(k)

(ka),(ka)
.

Let � be the least common multiple of 1, 2, . . . , a, a + 1.

(i) The generating function Fa can be rewritten as

Fa = Pa(x)

(1 − x�)2a

where Pa(x) is a product of cyclotomic polynomials, and deg(Pa(x)) = 2�a − (a + 2)a < 2a� − 1.
(ii) The polynomial Pa is the generating function for colored partitions with parts in A = {1̄, 2, ̄2, . . . , a, ̄a, a + 1}, where parts j and 

j̄ appear with multiplicity less than �/ j times.
(iii) The coefficients of Pa are positive and palindrome, but in general are not a concave sequence.
(iv) The coefficients g(k)

(ka),(ka)
are described by a quasipolynomial of degree 2a − 1 and period dividing �. In fact, we have checked that 

the period is exactly � for a ≤ 10.
(v) The coefficients g(k)

(ka),(ka)
satisfy a formal reciprocity law: xa(a+2)Fa(x) =Fa(

1
x ).
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Idea of Proof. Item (i) follows from the expression of Fa and (1 −xl)2a as a product of cyclotomic polynomials. For (ii), write 
(1 − xl)2aFa as a product of polynomials of the form (1−xl)

(1−x j)
= 1 + x j + x2 j + · · · + x
 l

j � , and remark that each part appears 
with bounded multiplicity. Using (ii), Pa has positive coefficients and they are a palindrome because the first cyclotomic 
polynomial does not appear in Pa . For a = 2, we have that P2(x) = x16 + x15 + 3x14 + 4x13 + 7x12 + 9x11 + 10x10 + 13x9 +
12x8 + 13x7 + 10x6 + 9x5 + 7x4 + 4x3 + 3x2 + x + 1 is not a concave sequence. Finally, (iv) follows from Proposition 4.13 
of [5] and (v) from the computation of Fa(

1
x ).

As an illustration, we include the following example that shows that the coefficients g(k)

(k2),(k2)
are given by the following 

quasipolynomial of degree 3 and period 6:

g(k)

(k2),(k2)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/72k3 + 1/6k2 + 2/3k + 1 if k ≡ 0 mod 6
1/72k3 + 1/6k2 + 13/24k + 5/18 if k ≡ 1 mod 6
1/72k3 + 1/6k2 + 2/3k + 8/9 if k ≡ 2 mod 6
1/72k3 + 1/6k2 + 13/24k + 1/2 if k ≡ 3 mod 6
1/72k3 + 1/6k2 + 2/3k + 7/9 if k ≡ 4 mod 6
1/72k3 + 1/6k2 + 13/24k + 7/18 if k ≡ 5 mod 6

5.3. On the growth of the Kronecker coefficients

Murnaghan famously observed that the sequences obtained by adding cells to the first parts of the partitions indexing a 
Kronecker coefficients are eventually constant. Fix three arbitrary partitions. In [4], it is shown that the sequences obtained 
by adding cells to the first parts of the three partitions indexing a reduced Kronecker coefficients are described by a linear 
quasipolynomial of period 2. These sequences can be interpreted as adding cells to the second rows of the partitions 
indexing a Kronecker coefficient, while keeping their fist parts very long in comparison.

An interesting question is then to describe what happens when we add cells to arbitrary rows of the partitions indexing 
a Kronecker (and reduced Kronecker) coefficient. The results presented in this note can be seen as a contribution to this 
investigation. We have shown that for any a, the sequence ḡk

(ka),(ka)
is described by a quasipolynomial of degree 2a − 1 and 

period dividing �.
On the other hand, in [4] it is also shown that when we fix three partitions, and start adding cells to their first columns, 

the sequences obtained are eventually constant. From our combinatorial interpretation for ḡk
(ka),(ka)

in terms of plane parti-

tions of k fitting a 2 × a rectangle, we conclude that, for k fixed, the sequences {ḡk
(ka),(ka)

}a≥1 always stabilize. Their limit 
value is precisely the number of plane partitions of k with at most two parts. These sequences stabilize at a = k.
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