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In this paper, we focus on the reduced basis methodology in the context of non-linear 
non-affinely parameterized partial differential equations in which affine decomposition 
necessary for the reduced basis methodology are not obtained [9,8]. To deal with this 
issue, it is now standard to apply the EIM methodology [1,3] before deploying the Reduced 
Basis (RB) methodology. However, the computational cost is generally huge as it requires 
many finite element solves, hence making it inefficient, to build the EIM approximation 
of the non-linear terms [3,2]. We propose a simultaneous EIM reduced basis algorithm, 
named SER, which provides a huge computational gain and requires as little as N +1 finite-
element solves where N is the dimension of the RB approximation. The paper is organized 
as follows: we first review the EIM and RB methodologies applied to non-linear problems 
and identify the main issue, then we present SER and some variants and finally illustrates 
its performances in a benchmark proposed in [3].

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans ce papier, nous nous intéressons à la méthodologie bases réduites (RB) dans le 
contexte d’équations aux dérivées partielles paramétrisées non linéaires et non affines, 
pour lesquelles la décomposition affine nécessaire à la méthodologie RB ne peut être 
obtenue [9,8]. Pour traiter ce problème, il est à présent standard d’appliquer la méthodologie 
EIM [1,3] avant de déployer la méthodologie RB. Cependant, le coût de calcul de cette 
approche est en général considérable, car il requiert de nombreuses évaluations éléments 
finis pour construire l’approximation EIM des termes non linéaires [3,2], ce qui la rend 
très peu compétitive. Nous proposons l’algorithme SER, qui construit simultanément 
l’approximation EIM et la méthodologie RB, fournissant ainsi un gain de calcul considérable, 
et qui requiert au minimum N + 1 résolutions éléments finis, où N est la dimension de 
l’approximation RB. Le papier est organisé comme suit : tout d’abord, nous passons en 
revue les méthodes EIM et RB appliquées aux problèmes non linéaires et identifions la 
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difficulté principale, puis nous présentons SER et quelques variantes ; finalement, nous 
illustrons ses performances sur un benchmark proposé par [3].

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Reduced-order modeling is more and more used in engineering problems due to efficient evaluation of quantities of 
interest. The Reduced Basis Method (see [5,8,9,4,6,7]) has been especially designed for real-time and many-query contexts, 
and cover a large range of problems, among which non-affinely parameterized Partial Differential Equations (PDE). A core 
enabler of this method is the so-called offline/online decomposition of the problem. This allows for computing costly param-
eter independent terms that depend solely on the finite element dimension. However such decomposition is not necessarily 
or readily available in particular for non-affine/non-linear problems. The Empirical Interpolation Method (EIM, see [1,3]) 
has been developed to recover this core ingredient and is used prior to the reduced basis methodology on industrial based 
applications, see e.g. [2]. However the EIM building step can be costly when the terms are non-linear and requires many 
non-linear finite element solves. It is a deterring trait for this methodology, which forbids its application to non-linear 
applications.

In this paper, we propose a Simultaneous EIM–RB (named SER) construction that requires only but a few finite-element 
solves and builds together the affine decomposition as well as the RB ingredient. To start we first give an overview of both 
Reduced Basis and Empirical Interpolation methods in non-affinely parameterized PDE context to recall the necessary no-
tions. Based on these considerations, a second part makes an assessment of the proposed simultaneous approach, discussing 
the changes to be made in the EIM offline step. The last part illustrates our method with preliminary results obtained on a 
benchmark introduced in [3].

2. Preliminaries

Let u(μ) be a solution of a non-linear parameterized PDE, where μ is the p-vector of inputs (μ ∈ D ⊂ R
p

the parameter space). Considering the Hilbert space X ≡ H1
0(�), the variational formulation of the PDE consists in find-

ing u(μ) ∈ X as a root of a functional r such that

r(u(μ), v;μ) = 0 ∀v ∈ X . (1)

We denote by N the dimension of the finite-element approximation space XN ⊂ X , and uN (μ) the associated finite-
element approximation of u(μ) solution of (1).

In the following, we use a Newton algorithm to deal with the non-linearity. Denoting ku(μ) the solution at kth Newton’s 
iteration, and j the Jacobian associated with the functional r, the problem consists in finding δk+1u(μ) ≡ k+1u(μ) − ku(μ) ∈
XN and thus k+1u(μ) ∈ XN such that

j(u, v;μ; ku(μ))δk+1u(μ) = −r(ku(μ), v;μ) ∀v ∈ XN (2)

at each iteration k.
If j and r depend affinely in μ, there exists positive integers Q j and Q r , μ-dependent functions θq j

j , θqr
r and func-

tions jq j , rqr (1 � qr � Q r , 1 � q j � Q j) allowing to write such affine decompositions as

j(u, v;μ; ku) =
Q j∑

q j=1

θ
q j

j (ku;μ) jq j (u, v) r(ku, v;μ) =
Q r∑

qr=1

θ
qr
r (ku;μ)rqr (v) ∀u, v ∈ XN , ∀μ ∈ D (3)

For non-affinely parameterized problems, j and/or r depend on at least one non-affine function w(u(μ), x; μ)

j(u, v;μ; ku(μ); w(ku(μ), x;μ))δk+1u(μ) = −r(ku(μ), v;μ; w(ku(μ), x;μ)) (4)

and the affine decomposition (3) does not exist due to the definition of w(u(μ), x; μ). In order to recover an affine decom-
position for (4), we build an affine approximation w M(u(μ), x; μ) of w(u(μ), x; μ)

w M(u(μ), x;μ) =
M∑

m=1

βM
m (u(μ);μ)qm(x) (5)
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2.1. Empirical interpolation method

In order to build an affine approximation w M(u(μ), x; μ) =
M∑

m=1
βM

m (u(μ); μ)qm(x) of a non-affine parameter-dependent 

function w , we first introduce a sample S̄M = {μ̄1, . . . , μ̄M} ∈ DM , and the associated function space W̄ M = span{ξ̄m ≡
w(u(μ̄m), x; μ̄m), 1 � m � M}. These sets are built from a subset � of D, in which the first sample point μ̄1 is picked 
(assuming that ξ̄1 �= 0). The basis functions qm are based on ξ̄m , and establishing βM

m coefficients requires, online, the 
solution of a M × M system, ensuring that the EIM approximation w M(u, x; μ) is exact on a set of interpolation points {ti}i :

S̄1 = {μ̄1}, ξ̄1 = w(u(μ̄1), x; μ̄1), W̄1 = span{ξ̄1} t1 = arg sup
x∈�

|ξ̄1(x)|, q1 = ξ̄1(x)

ξ̄1(t1)
(6)

For M � 2, the sample points μ̄M are determined from a Greedy algorithm:

μ̄M = arg max
μ∈�

inf
z∈W M−1

||w(.; .;μ) − z||L∞(�)

ξ̄ M = w
(
u(μ̄M), x; μ̄M

)
, S̄M = S̄M−1 ∪ {μ̄M}, W̄ M = W̄ M−1 ⊕ span{ξ̄ M} (7)

The system ensuring the exactness of w M−1 at {ti}M−1
i=1 , gives w M−1(u(μ̄M), x; μ̄M), leading to the residual rM defined 

as rM(x) = w(u(μ̄M), x; μ̄M) − w M−1(u(μ̄M), x; μ̄M), on which interpolation points {t M}M�2 and basis functions {qM }M�2
are computed. The next t M and qM are given by

tM = arg sup
x∈�

|rM(x)|, qM(x) = rM(x)

rM(t M)
(8)

We are now ready to apply EIM to the Jacobian j; the affine decomposition reads

j(u, v;μ; ku; w M(u(μ), x;μ)) =
Q eim

j∑

q=1

M j
q∑

m=1

γ
q
j,m(ku;μ) jq

m(u, v)

︸ ︷︷ ︸
non−affine part of j

+
Q aff

j∑

l=1

θ l
j(

ku;μ) jl(u, v)

︸ ︷︷ ︸
affine part of j

∀u, v ∈ X, ∀μ ∈ D, (9)

with Q eim
j (resp. Q aff

j ) the number of non-affinely (resp. affinely) parameterized terms of j, and γ q
j,m (resp. jq

m) obtained 
from the EIM approximations. Similar decomposition is obtained for the residual r.

2.2. Reduced-basis method

We now turn to the RB methodology. We introduce SN = {μ1, · · · , μN} with N <<N , and we define the set of solutions 
Su

N = {uN (μi)}N
i=1, computed from the affine decomposition (9) with

j(uN (μi), v;μi; kuN (μi); w M(kuN (μi), x;μi))δ
k+1uN (μi) = −r(kuN (μi), v;μi; w M(kuN (μi), x;μi))

∀v ∈ X,∀i ∈ [1, N] (10)

and orthonormalized with respect to the <, >X inner product to provide W N = {ξn}N
i=1.

The reduced-basis approximation uN (μ) ∈ W N is expressed as a linear combination of W N elements

uN(μ) =
N∑

i=1

uN,i(μ)ξ i such that r(uN , v;μ; w(uN , x;μ)) = 0 ∀v ∈ W N (11)

The offline/online strategy used to build efficiently the reduced basis approximation is based on the affine decomposition 
(3), (9). Choosing {ξn}N

i=1 as test functions and using (11), we have for 1 � l � N:

N∑

j=1

j(ξ j, ξ l;μ; kuN ; w(kuN , x;μ))(k+1uN, j − kuN, j) = −r(ξ l;μ; kuN ; w(kuN , x;μ)) (12)

The offline step consists in the pre-computation of the terms jq
m(ξ j, ξ l), jl(ξ j, ξ l) and rq

m(ξ l), rl(ξ l), and is done of-

fline once thanks to the affine decomposition. To evaluate online k+1uN (μ) for any given μ, the coefficients γ q
j,m(kuN , μ),

θ l
j(

kuN , μ) and γ q
r,m(kuN , μ), θ l

r(
kuN , μ) are computed in order to recover the N × N system (11) giving k+1uN, j coefficients 

and consequently k+1uN (μ).
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3. A simultaneous EIM–RB method

The standard methodology described previously briefly requires the use of EIM prior to the RB methodology for each 
affine-parameter-dependent function w (4). These EIM approximations are built upfront, allowing us to then write the 
affine decomposition (9). However, the greedy algorithm (7) of the EIM offline step requires the computation of the solu-
tion uN (μ) for all points of � ⊂ D, i.e in the step (7).

The SER methodology proposes to reduce the computational cost by simply using the readily available reduced basis 
approximation based on the previous EIM step and build simultaneously EIM and RB. In particular the expensive step (7)
will now use solely RB approximations.

The initialization of EIM offline stage (6) doesn’t change since no reduced approximation uN (μ) is available yet. The 
resulting rough EIM approximations w1 of each non-affine function w are used to compute a first affine decomposition 
from which ξ1 can be built, leading to a first reduced approximation u1(μ). After this initialization step, EIM and RB 
approximation spaces are enriched alternatively. Each new EIM basis function qM : (i) is built from a reduced-basis ap-
proximation uM−1(μ) obtained at previous iteration M − 1; (ii) completes the EIM approximation to then build the affine 
decomposition for uM(μ). To summarize, the EIM steps modified by SER now read:

μ̄M = arg max
μ∈�

inf
z∈W M−1

||w(uM−1(μ); .;μ) − z||L∞(�) (13)

ξ̄ M = w
(
uM−1(μ̄M); x; μ̄M

)
, S̄M = S̄M−1 ∪ {μ̄M}, W̄ M = W̄ M−1 ⊕ span{ξ̄ M} (14)

The residual rM(x) = w(uM−1(μ̄M), x; μ̄M) − w M−1(uM−1(μ̄M), x; μ̄M) then gives t M and qM :

tM = arg sup
x∈�

|rM(x)|, qM(x) = rM(x)

rM(t M)
(15)

The affine decomposition is then updated with the new EIM approximations to compute the next reduced basis ξ M
thanks to (10), to then enrich the W M space.

Remark 1 (RB updates). The EIM approximations are changing during the building of the W N space. Then, the operator – 
and the solved problem – evolves at each step, which can mildly deteriorate the approximation. Recomputing W N elements 
using finite-element solves based on the current EIM approximation may be considered. The offline precomputations need, 
however, to be updated for all elements of W N for each update of the affine decomposition.

Remark 2 (EIM updates). In the SER methodology, only one finite element solve of (1) is required for the initialization; 
afterwards, the EIM and RB approximations are updated alternatively. We may in fact update the RB approximation every r
EIM steps: if r = M , we recover the standard method, if r = 1 we recover the SER method and if 1 < r < M , we have an 
intermediary method that requires finite-element solves for the intensive EIM step (7) before the first RB update. Other 
alternatives are readily available and some will be discussed in a future publication.

4. Preliminary results

We now turn to numerical experiments of the SER method compared to the standard one based on the benchmark 
problem introduced in [3]. It reads, find u such that

−�u + μ1
eμ2u − 1

μ2
= 100 sin(2πx) sin(2π y) in � =]0,1[2 and μ = (μ1,μ2) ∈ D = [0.01,10]2 (16)

and we are interested in the output s, the average of the solution u over �. Thanks to the function g(u, x; μ) = μ1
eμ2u−1

μ2
, 

we are in the setting of the SER methodology for non-linear problems. Following the standard methodology, we develop 

gM =
M∑

i=1
βM

m (u, μ)qm(x) of g thanks to the Empirical Interpolation Method (see Section 2.1). The training set � ⊂ D used 

for EIM is composed of 15 elements in each direction, which represents a subset of size 225. We shall use the absolute 
errors on the solution and the output, defined as follows:

εu,r
M,N =‖ uN − ur

N ‖L2 εs,r
M,N = |sN − sr

N |, (17)

where ·N is the finite element solution/output of the initial problem (2), ·rN the reduced basis solution/output, while r is 
the frequency at which the EIM are updated, see Remark 2.

We first display the maximum of the absolute errors (17) obtained with a test set composed of 500 inputs – selected 
randomly in [0.01, 10]2 – using the standard method r = M in Table 1a, which reproduces the results in [3]. Tables 1c and 
1d correspond to the SER methodology (r = 1) with N = M and investigate the influence of W N recomputation in the SER 
method, see Remark 1. Table 1b is an intermediary stage such that 1 < r < M , where the EIM basis functions are built 
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Table 1
SER algorithm: Maximum absolute errors on solution u and on output s.

N M max(εu,M
M,N ) max(εs,M

M,N )

4 5 7.38e−3 5.75e−3
8 10 1.01e−3 2.34e−4

12 15 1.49e−4 3.09e−5
16 20 2.21e−5 1.25e−5
20 25 5.88e−6 2.82e−6

N M max(εu,5
M,N ) max(εs,5

M,N )

4 5 8.21e−3 6.31e−3
8 10 4.48e−3 6.18e−3

12 15 2.69e−4 2.36e−4
16 20 1.48e−4 9.31e−5
20 25 2.60e−5 1.46e−5

(a) r = M

N M max(εu,1
M,N ) max(εs,1

M,N )

5 5 9.98e−3 7.77e−3
10 10 2.32e−3 1.86e−3
15 15 4.61e−4 3.75e−4
20 20 2.48e−4 2.02e−4
25 25 3.51e−5 2.33e−5

(c) r = 1
(W N recomputed)

(b) r = 5

N M max(εu,1
M,N ) max(εs,1

M,N )

5 5 1.30e−2 1.02e−2
10 10 2.20e−3 1.50e−3
15 15 4.83e−4 4.05e−4
20 20 2.42e−4 1.98e−4
25 25 1.50e−5 1.24e−5

(d) r = 1
(W N not recomputed)

by groups of r (r = 5). In this last case, since we do not have access to the RB yet, the first group of r EIM basis is built 
from finite-element approximations and reduced-basis approximations are used afterwards. This explains, for example, that 
(N = 4, M = 5) is similar to the first one in Table 1a.

The maximum of the errors observed with the SER method (r = 1) is slightly higher than with the case r = 5, which 
itself displays results slightly higher than those obtained with the standard method r = M . This behavior was expected. 
The results show the pertinence of the SER method and evidence that we can expect good results within a reasonable 
computational budget, since the number of finite-element approximations can then be reduced to N + 1 (Table 1d).

5. Conclusion

We have now an algorithm and variants that allow an efficient use of EIM and RB in the context of non-linear non-affine 
partial differential equations. We have already deployed SER in real applications and the initial results are very promising, 
showing the same behavior as the benchmark problem of this paper. This will be reported as well as an analysis of SER in 
a subsequent paper with applications to non-linear multiphysic problems.
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