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Let X = P1 × P1 × P1 be the Segre variety. Let S be the space of twisted cubic curves in 
X with tri-degree (1, 1, 1). In this note, we prove that S is a rational, smooth variety of 
dimension 6. Also, we compute the Poincaré polynomial of S by stratifying the space into 
projective space fibration over some base spaces.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit X = P1 ×P1 ×P1 la variété de Segre. Soit S l’espace des courbes cubiques rationnelles 
de tridegré (1, 1, 1) dans X . Dans cet article, nous prouvons que S est une variété 
rationnelle, lisse, de dimension 6. Nous calculons également le polynôme de Poincaré de S
à l’aide d’une stratification dont les strates sont des fibrés projectifs.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and results

Rational curves in a projective variety X have been studied by many algebraic geometers from various viewpoints: curve 
counting theory; minimal model program; construction of new varieties. One of the key issues in the research is to com-
pactify the space R of smooth rational curves in different ways [3,4]. But, in general, the space R may not be irreducible. 
When the target space is a homogeneous variety, then it is shown that there exists a unique irreducible component con-
sisting of smooth rational curves in each compactification for a fixed curve class β [6]. Let X be the projective variety of 
the product P1 × P1 × P1 in P7 embedded by the complete linear system |O(1, 1, 1)|. Let us fix the curve class of the 
type β = (1, 1, 1) ∈ H2(X) = Z⊕3. In this paper, we consider the compactification of Rβ in the stable maps space M, sta-
ble sheaves space S, and Hilbert scheme H, respectively. In [2], the authors studied the geometry of the spaces S and H. 
Concerning the similar situation, the main results of this paper are the following ones.
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Theorem 1.1.

(1) The spaces are isomorphic to each other:

M ∼= S ∼= H.

(2) The space S is a smooth, irreducible and rational variety of dimension 6.

Also we compute the Poincaré polynomial of S by using the proof of Theorem 1.1 (for detail, see Proposition 3.2).

Remark 1.2. The results of [2, Proposition 4.8] have been strengthened through Theorem 1.1.

2. Proof of Theorem 1.1

2.1. Application of the results in [4]

Since the variety X = P1 × P1 × P1 clearly satisfies all conditions stated in [4, Lemma 2.1], we can apply the main result 
in [4]. That is, there exist blow-up/down diagrams among M, S and H:

M̃ H

M S

where the blow-up centers are loci of a multiple cover of lines (or the locus of plane curves) (for detail, see [4]).

First step of the proof of Theorem 1.1. Let f (C) be the image curve of the stable map [ f : C → X] ∈ M. By definition, 
[ f (C)] = (1, 1, 1) ∈ H2(X) and thus the map is not a multiple cover onto its image. This implies that the blow-up centers 
in M are empty. Thus the first isomorphism in item (1) holds by [4, Theorem 1.7]. On the other hand, the blow-up centers 
in S are empty because X does not contain any planes and no plane cubic curve. Therefore, the second part of item (1) is 
proved by [4, Theorem 4.16]. The smoothness of item (2) is exactly Proposition 4.13 in [4]. The irreducibility of S comes 
from that of M [6]. �
Remark 2.1. In [2], the authors proved that S is smooth in the complement S \ D such that D ∼= X parameterizes the union 
of three lines meeting at a single point x ∈ X . One checks that S is smooth everywhere with the help of the computer 
program Macaulay2 [5] as follow. Without loss of generality, let us assume that

I X = 〈x4x7 − x5x6, x2x7 − x3x6, x2x5 − x3x4, x1x7 − x3x5,

x1x6 − x2x5, x0x7 − x2x5, x0x6 − x2x4, x0x5 − x1x4, x0x3 − x1x2〉,
where x0, x, · · · , x7 are the homogeneous coordinates of P7. Also, let us define a union of three lines C by

IC = 〈x3, x5, x6, x7, x1x2, x1x4, x2x4〉
such that the three lines meet at the point x = [1 : 0] × [1 : 0] × [1 : 0]. Then the tangent space of S at [OC ] is isomorphic to

Ext1
X (OC ,OC ) ∼= C6

and thus S is smooth at [OC ]. This holds for every point in D because X is homogeneous.

2.2. Rationality of the space S

By using the notion of the relative extension, we construct a P3-bundle over an affine space that is birational with the 
space S. Let us start with the following observation. Let C ⊂ X be a general twisted cubic curve with the degree β = (1, 1, 1). 
Then the projection C0 = π12(C) is a smooth conic where π12 : P1 × P1 × P1 → P1 × P1 is the projection map into the first 
two components. Let us consider the surface S = C0 × P1. Then clearly C ⊂ S . Hence there exists a structure sequence

0 → I S,X → IC,X → IC,S → 0.

Remark that I S,X = OX (−1, −1, 0) and IC,S ∼= IC ′,S = OS (−1, −1) for any twisted cubic curves C and C ′ in X such that 
π12(C) = π12(C ′) = C0. Conversely, let us fix a conic C0 and thus the ruled surface S . Then there exists a one-to-one 
correspondence between IC,X ’s and the points

P = P(Ext1 (IC,S , I S,X )).
X
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On the other hand,

Ext1
X (IC,S ,OX (−1,−1,0)) = Ext2

X (O X (−1,−1,0), IC,S(−2,−2,−2))∗

= H2(IC,S(−1,−1,−2))∗ = H2(OS(−1,−1) ⊗OS(−2,−2))∗

= H2(OS(−3,−3))∗ = H0(OS(1,1)) ∼=C4.

Hence P = P3. Let us relativize this situation.

End of the proof of Theorem 1.1. Let Z ⊂ Gr(3, 4) ×P1 ×P1 → Gr(3, 4) be the universal family of conics. Let us consider the 
family of P1 × P1 in X , which is provided by the direct product

p : S := Z × P1 ⊂ Gr(3,4) × X → Gr(3,4).

Let q be the projection S → X . Let

E := Ext1
p(OS(−1,−1),q∗OX (−1,−1,0))

be the relative extension sheaf on the space Gr(3, 4). We claim that there exists a birational map

� : P(E) −→ S

provided by the tautological family K on P(E):

0 → q∗OX (−1,−1,0) ⊗OP(E)(1) → K → OS(−1,−1) → 0.

Let π : P(E) → Gr(3, 4) be the structure morphism. Then we claim that the map � is well-defined and injective 
on the locus Gr(3, 4) \ � of the smooth conics. Let (C0, κ) ∈ P(E) for a smooth conic C0 ∈ Gr(3, 4) and κ(�= 0) ∈
Ext1(OS(−1, −1), OX (−1, −1, 0)) ∼= Hom(OS (−1, −1), OS ), where S = C0 × P1. By the definition of the pulling-back and 
the injection κ :OS(−1, −1) ↪→ OS , we have a commutative diagram

0 0

OC OC

0 OX (−1,−1,0) OX OS 0

0 OX (−1,−1,0) K(C0,κ) OS(−1,−1)

κ

0

0 0

such that C is a rational cubic curve in X with tri-degree (1, 1, 1). This implies that K(C0,κ)
∼= IC,X . The map � restricted 

on the fiber π−1(C0) = P3 is injective because κ parameterizes the conics in S . Also, let C0, C1 ∈ Gr(3, 4) be two different 
smooth conics. Then one can see that the intersection of C0 and C1 consists of two points. This observation with the 
structures of S0 and S1 in X enable us to conclude that the intersection of S0 and S1 is the union of two lines. Hence there 
does not exist any cubic curves lying on the intersection part S0 ∩ S1. Finally, the map � is injective on the P3-bundle over 
Gr(3, 4) \ �. Since dimP(E) = dimS = 6, the map � is generically embedding. Thus we proved the claim. �
3. Poincaré polynomial of S

This section is devoted to compute the Poincaré polynomial of S. The virtual Poincaré polynomial of X is defined by

P (X) =
∑

(−1)i+ j dimQ gr j
W Hi

c(X,Q)qi/2,

where gr j
W Hi

c(X, Q) is the j-th weight-graded piece of the mixed Hodge structure on the i-th cohomology of X with 
compact supports. Since odd cohomology groups of moduli spaces of our interest always vanish, their virtual Poincaré 
polynomial is a polynomial indeed. Let e(X) := ∑

i(−1)idimHi(X) be the virtual Euler number of the variety X . The virtual 
Poincaré polynomial has the well-known motivic properties:



1126 K. Chung, W. Lee / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 1123–1127
Proposition 3.1.

(1) P (X) = P (X − Z) + P (Z) for a closed subvariety Z of X.
(2) Let X and Y be quasi-projective varieties. Let π : X → Y be a Zariski locally trivial fibration with fiber F . Then P (X) = P (Y ) · P (F ).
(3) Let f : X → Y be a bijective morphism. Then P (X) = P (Y ).
(4) If X is a smooth and projective variety, then the virtual Poincaré polynomial is the usual one.

In (2), if the fiber is F = Gr(k, n), the same conclusion holds even though π is an analytic fibration [1, Lemma 3.1].

Proposition 3.2. The Poincaré polynomial of S is given by

1 + 3q + 7q2 + 10q3 + 7q4 + 3q5 + q6.

Proof. Let us consider the map

� : M = M(P1 × P1 × P1, (1,1,1)) −→ M(P1 × P1, (1,1)) ∼= P3

induced by the projection π12 : P1 × P1 × P1 → P1 × P1 into the first two components. As we have seen in the proof of 
Theorem 1.1, the map � is a P3-fibration over the complement of the locus � ∼= P1 ×P1 of degenerated conics. The inverse 
image �−1(�) consists of two irreducible components

�−1(�) = �1 ∪ �2

such that �1 (resp. �2) consists of the cubic curves C = L1 ∪ Q (resp C = L2 ∪ Q ) where [L1] = (1, 0, 0) ∈ H2(X) and 
[Q ] = (0, 1, 1) ∈ H2(X) (resp. [L2] = (0, 1, 0) ∈ H2(X) and [Q ] = (1, 0, 1) ∈ H2(X)). Note that �1 ∼= �2 by switching the 
lines L1 and L2. Also �1 ∩ �2 consists of the reducible cubic curves L = L1 ∪ L2 ∪ L3. We show that

�1 = A ∪ B,

where the locus A parameterizes cubic curves C = L ∪ Q such that [L] = (1, 0, 0) ∈ H2(X) and [Q ] = (0, 1, 1) ∈ H2(X). Note 
that L ∩ Q = {pt} because χ(OL Q ) = 1. Hence one can easily see that A is a P2-bundle over (P1)3. The second component 
B parameterizes the closure of the locus of cubic curves C = L ∪ L2 ∪ L3 such that L2 ∩ L3 = ∅. Therefore, the locus B is a 
P1-bundle over (P1)3. Note that the intersection A ∩ B is isomorphic to a (P1)3. Summarizing, we obtain

P (�1) = P (P2) · P ((P1)3) + P (P1) · P ((P1)3) − P ((P1)3). (1)

On the other hand, the intersection �1 ∩ �2 is a union of two irreducible components

�1 ∩ �2 = D ∪ E

such that D (resp. E) is the locus of cubic curves C = L1 ∪ L2 ∪ L3 such L1 ∩ L2 �= ∅ (resp. = ∅). Then, by the similar argument 
as before, we obtain

P (�1 ∩ �2) = P (D) + P (E) − P (D ∩ E)

= 2 · P (P1) · (P (P1))3 + P (P1) · P (P1)3 − 2 · P (P1)3.
(2)

By equations (1), (2) and Proposition 3.1, we have

P (M) = P (P3) · P (P3 − �) + P (�1) + P (�2) − P (�1 ∩ �2)

= P (P3) · P (P3 − �) + 2 · [P (P2) · P ((P1)3) + P (P1) · P ((P1)3) − P ((P1)3)] − P (�1 ∩ �2)

= 1 + 3q + 7q2 + 10q3 + 7q4 + 3q5 + q6.

Since S ∼= M is smooth, we proved the claim. �
Remark 3.3. In particular, the Euler number of M is e(M) = 32; this is obtained using the torus localization technique.
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