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Let c : �k−1 → R+ be convex and � ⊂ R
n be a bounded domain. Let f0 and f1 be 

two closed k-forms on � satisfying appropriate boundary conditions. We discuss the 
minimization of 

∫
�

c (A) dx over a subset of (k − 1)-forms A on � such that dA + f1 −
f0 = 0, and its connection with a transport of symplectic forms. Section 3 mainly serves 
as a step toward Section 4, which is richer, as it connects to variational problems with 
multiple minimizers.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soient c : �k−1 → R+ une fonction convexe et � ⊂ R
n un domaine borné. Soient f0 et 

f1 des k-formes fermées sur � satisfaisant des conditions de bord appropriées. Nous 
nous intéressons à la minimisation de 

∫
�

c (A) dx sur l’ensemble des (k − 1)-formes A
telles que dA + f1 − f0 = 0, ainsi que sa relation à un problème de transport des formes 
symplectiques. La Section 3 sert d’étape intermédiaire vers la Section 4, qui est plus riche, 
car reliée à des problèmes variationnels avec une multitude de minimiseurs.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit n un entier positif pair, soit � ⊂ R
n un ouvert borné contractile de bord régulier et de normale unitaire extérieure ν . 

Supposons que f0, f1 ∈ C1(�; �2) soient des formes symplectiques telles que ν ∧ ( f0 − f1) s’annule sur le bord ∂�. Fai-
sons l’hypothèse supplémentaire que ft := t f1 + (1 − t) f0 reste symplectique pour tout t ∈ [0, 1]. Nous identifierons les 
éléments u de �1 avec des champs vectoriels de u : � →R

n . Rappelons que la définition de l’ensemble C( f1 − f0) apparaît 
dans la Definition 2. Montrons comment le problème variationnel

(P2) inf
A

⎧⎨
⎩I2 (A) = 1

2

∫
�

|A|2 : A ∈ C ( f1 − f0)

⎫⎬
⎭
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peut être exploité pour produire des bijections qui soient des applications optimales transportant f0 sur ft . Notre affirmation 
repose aussi sur la Section 1 affirmant que le chemin t → ( ft , A2) est optimal pour la fonction coût c̄( f , A) = |A|2 dans le 
problème (1).

Theorem 1. Soit A2 l’unique minimiseur de (P2) (voir Theorem 4). Comme ft est non dégénérée, soit ut ∈ �1 l’unique solution de 
ut � ft = A2 . Soit enfin ϕ : [0, 1] × �̄ → �̄ le flot associé à u, défini par

∂tϕt = ut ◦ ϕt sur t ∈ [0,1] × �, ϕ0 = id sur �.

Alors, pour tout t ∈ [0, 1], ϕt ∈ Diff1 (
�;�)

(en particulier ϕt(�) = �) et ϕ∗
t ( ft) = f0 dans �.

Proof. Le résultat de régularité (12) nous donne que A2 ∈ C1,α pour tout α < 1, et donc que (t, x) → ut(x) est de classe 
C1

(
[0,1] × �;Rn

)
. Comme ν ∧ A2 = 0 sur ∂�, nous en déduisons que 〈ν; ut〉 = 0 sur ∂�, d’où ϕt ∈ Diff1 (

�;�)
. Nous 

utilisons un résultat standard (voir par exemple le Theorème 12.5 dans [3]) pour conclure que

∂t
(
ϕ∗

t ( ft)
) = ϕ∗

t

(
∂t ft + d(ut � ft) + ut �d ft

)
.

Comme d ft = 0 et que d (ut � ft) = dA2 = f0 − f1 = −∂t ft nous en déduisons que ϕ∗
t ( ft) est indépendante de t , ce qui 

termine la preuve, car ϕ0 = id. �
1. Introduction

Let � ⊂ R
n be a bounded contractible smooth set and denote by ν the outward unit normal to ∂�. Let 1 < p < ∞ and 

let f0, f1 ∈ Lp(�̄; �k) be two closed forms (in the weak sense) such that ν ∧ ( f1 − f0) = 0 on ∂� (cf. Definition 2). When 
k = 2, n = 2m and f0 and f1 are smooth and of maximal rank these forms are called symplectic.

Our original motivation is to find a map ϕ : �̄ → �̄, so that ϕ∗ ( f1) = f0. This is a very classical problem that goes 
back to the famous Darboux theorem. We want here to propose an “optimal” way of selecting such a ϕ . In our articles [5]
and [6], we discuss other approaches to the problem.

Let us informally start with a description [5], to arrive at the content of the current manuscript. Denote by F the set of 
closed forms h ∈ Lp(�, �k) such that ν ∧ ( f1 − h) = 0 on ∂� in the weak sense. Denote by P ( f0, f1) the set of pairs ( f̄ , Ā)

such that f̄ is continuous in t , f̄ starts at f0, ends at f1,

Ā ∈ L1((0,1) × �;�k), f̄ ∈ C([0,1];F),
1∫

0

( ∫
�

(〈 f ; ∂th〉 + 〈A; δh〉)dx
)

dt =
∫
�

〈 f1,h1〉 − 〈 f0,h0〉, ∀ h ∈ C1([0,1]; C1(�̄,�k)
)
. (1)

Let c̄ : �k × �k−1 → R ∪ {∞} be a lower semicontinuous function, bounded below. We are interested in proving the 
existence of minimizers and in characterizing the Euler–Lagrange equations of

inf
( f̄ , Ā)

{ 1∫
0

∫
�

c̄( f̄t(x), Āt(x))dx dt
∣∣∣ ( f̄ , Ā) ∈ P ( f0, f1)

}
. (2)

Let C ( f1 − f0) be the set of A ∈ L1(�; �k−1) that satisfy in the weak sense (cf. Definition 2):

dA + f1 − f0 = 0 in � and ν ∧ A = 0 on ∂�. (3)

One of the simplest versions of the variational problem (2) is obtained by assuming the existence of a strictly convex 
function c : �k−1 →R such that c̄( f̄ , Ā) = c( Ā). Setting

A(x) =
1∫

0

Āt(x)dt, f̃t = (1 − t) f0 + t f1,

we have ( f̃ , A) ∈ P ( f0, f1), A ∈ C ( f1 − f0) and by Jensen’s inequality (which is strict unless Āt ≡ A)

1∫
0

( ∫
�

c̄( f̄t(x), Āt(x))dx
)

dt =
∫
�

( 1∫
0

c( Āt(x))dt
)

dx ≥
∫
�

c(A)dx =
1∫

0

( ∫
�

c̄( f̃t(x), A(x))dx
)

dt.

Thus, the study of (1) reduces to that of the variational problem

(P ) inf
A

⎧⎨
⎩I (A) =

∫
c (A)dx : A ∈ C ( f1 − f0)

⎫⎬
⎭ .
�
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In the particular case where c(A) = |A|2/2, n = 2m and k = 2, (P ) has a unique minimizer A that satisfies A ∈ Cl+1,α(�̄, �1)

if for instance f1, f0 ∈ Cl,α(�̄, �2) (cf. Theorem 4). If in addition f̃t = (1 − t) f0 + t f1 remains a symplectic form for any 
t ∈ [0, 1] then we can define (cf. Theorem 1) u ∈ C1

([0, 1]; Cl,α(�̄, �1)
)
, which we identify with a vector field and ϕ :

[0, 1] × �̄ → �̄ so that

ut � ft = A, and

{
d
dt ϕt = ut ◦ ϕt t ∈ [0,1]

ϕ0 = id .

Consequently, for any t ∈ [0, 1], ϕt is a diffeomorphism from � onto � and ϕ∗
t ( ft) = f0 in �.

Returning to a general strictly convex smooth c that satisfies growth conditions such as (7), the existence of a minimizer 
A is obtained by the standard method of the calculus of variation (cf. Theorem 4). Optimal regularity properties of A is a 
harder task to establish in general. Setting q = p/(p − 1), one identifies the dual problem of (P ), obtained by maximizing 
over the set of h ∈ W 1,q

(
�;�k

)
,

D(h) :=
∫
�

(
〈 f1 − f0;h〉 − c∗ (δh)

)
dx.

A maximum is readily obtained (cf. Theorem 6) in this problem that we denote by (D). We discuss also the case where 
c(A) = |A|, the linear growth case. We obtain a duality result in weaker spaces (cf. Theorem 12).

2. Notation and definition

For simplicity, throughout the manuscript, � ⊂ R
n is assumed to be an open contractible smooth set and ν denote 

the outward unit normal to ∂�. Let 1 ≤ k ≤ n be an integer. We assume that p, q ∈ (1, ∞) are conjugate of each other 
in the sense that p + q = pq. We refer to [3] for this section and adopt the following notations. First, if u ∈ �1

(
R

n
)

and 
f ∈ �k

(
R

n
)
, then u � f is the interior product of f with u. If ϕ ∈ C1

(
�;Rn

)
, then ϕ∗ ( f ) is the pullback of f by ϕ . Recall 

that for u ∈ �1
(
R

n
)
, f ∈ �k

(
R

n
)

and h ∈ �k+1
(
R

n
)
, we have 〈u ∧ f ;h〉 = 〈 f ; u �h〉.

We now give a weak formulation to the notion of closedness as well as its dual counterpart. Let 1 ≤ k ≤ n − 1 be an 
integer, f ∈ L1

(
�;�k

)
.

(i) When we write d f = 0 (resp. δ f = 0) in the weak sense, we mean that∫
�

〈 f ; δh〉 = 0 ∀ h ∈ C∞
c

(
�;�k+1

) (
resp.

∫
�

〈 f ;dh〉 = 0 ∀ h ∈ C∞
c

(
�;�k−1

))
.

(ii) Similarly if we want to express in the weak sense

(i)

{
d f = 0 in �

ν ∧ f = 0 on ∂�

(
resp. (ii)

{
δ f = 0 in �

ν � f = 0 on ∂�

)
, (4)

we write 
∫
�

〈 f ; δh〉 = 0 ∀ h ∈ C∞ (
�;�k+1

) (
resp.

∫
�

〈 f ;dh〉 = 0 ∀ h ∈ C∞ (
�;�k−1

))
.

We will often use the following results in [3]: Theorem 6.5, the regularity result in Theorem 7.2, the classical integration 
by parts in Theorem 3.28, the particular version of Gaffney inequality in Theorem 5.21, and the remark following it.

Definition 2. Let 1 ≤ k ≤ n − 1, and f ∈ Lp
(
�;�k

)
be such that (4) (i) holds. We say that A ∈ L1

(
�;�k−1

)
satisfies in the 

weak sense (3), and we write A ∈ C ( f ), if∫
�

〈A; δh〉 =
∫
�

〈 f ;h〉 for every h ∈ C∞ (
�;�k−1

)
. (5)

Remark 3. (i) Note that C ( f1 − f0) is not empty. Indeed, combining (4) and Theorem 7.2 in [3], there exists F ∈
W 1,p

(
�;�k−1

)
such that F ∈ C( f1 − f0) and δF = 0.

(ii) Note that, when k = 1 the minimization problem (P ) is trivial since, noticing that d is here the gradient operator, 
C ( f1 − f0) = {F }.

(iii) When k = n the condition (4) has to be replaced by∫
�

( f1 − f0) = 0. (6)

Indeed (6) insures that the set C ( f1 − f0) is not empty (see, e.g., Theorem 7.2 in [3]).
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3. The superlinear case

Let γ1, · · · , γ4 > 0 and let c : �k−1
(
R

n
) →R+ be a C1, strictly convex satisfying

γ1 |A|p − γ2 ≤ c (A) ≤ γ3 |A|p + γ4, (7)

The following properties are easily derived (cf., e.g., Chapter 2 in [4]): if c∗ denotes the Legendre transform of c, then c∗ ∈ C1

and there exist constants β > 0, α1, · · · , α4 > 0 such that

α1
∣∣A∗∣∣q − α2 ≤ c∗ (

A∗) ≤ α3
∣∣A∗∣∣q + α4 (8)

and

|∇c (A)| ≤ β
(
|A|p−1 + 1

)
and

∣∣∇c
(

A∗)∣∣ ≤ β
(∣∣A∗∣∣q−1 + 1

)
. (9)

Let 1 ≤ k ≤ n − 1, f0, f1 ∈ Lp
(
�;�k

)
be two k-forms such that, in the weak sense

f := f1 − f0 satisfies (4) (i) and d f0 = d f1 = 0 in �. (10)

We are mostly interested in the symplectic case, which means that k = 2 (but most of this paper will work for any k), 
n = 2m and f0 and f1 satisfy, in addition to the previous hypotheses, rank [ f0] = rank [ f1] = 2 m. The other relevant, and by 
now classical, problem is the case of volume forms where k = n and f0 · f1 > 0 in �, where we have identified the n-forms 
with scalar functions. Note that in this case the conditions (10) are automatically fulfilled. They have to be replaced by (6).

3.1. Existence of a minimizer

Theorem 4. If 1 ≤ k ≤ n − 1 then there exists a unique minimizer A ∈ Lp
(
�;�k−1

)
of (P).

(i) It satisfies in the weak sense

δ(∇c
(

A
)
) = 0 in �. (11)

(ii) If we further assume that c (A) = 1
2 |A|2 , then A has the optimal regularity; namely, let l be an integer, 0 < α < 1 and 

1 < r < ∞, then

A ∈
{

Cl+1,α
(
�;�k

)
if f1 − f0 ∈ Cl,α

(
�;�k

)
W l+1,r

(
�;�k

)
if f1 − f0 ∈ W l,r

(
�;�k

)
.

(12)

Proof. Step 1. Existence and uniqueness of a minimizer in (P ) is given by standard methods of the calculus of variations 
(cf., e.g., [4]). Indeed, the growth condition (7) and the convexity of c ensures that A → ∫

�
c(A) dx is weakly lower semi-

continuous on Lp(�; �k−1) and its sub-level subsets are weakly compact. By Remark 3, Lp(�; �k−1) ∩ C ( f1 − f0) �= ∅. 
Furthermore, the latter set is weakly closed. Hence, (P ) has a minimizer Ā over C ( f1 − f0), which turns out to be in 
Lp(�; �k−1) ∩ C ( f1 − f0). The strict convexity of c ensures uniqueness of the minimizer.

Step 2. Let h ∈ C∞
0

(
�;�k−2

)
. Then A + ε dh ∈ C ( f1 − f0). The growth condition on |∇c| in (9) ensures that the real 

valued function ε → ∫
�

c
(

A + ε dh
)

is differentiable at 0. Since it achieves its minimum there, its derivative must vanish, 
which is precisely (11).

Step 3. We assume now that c (A) = 1
2 |A|2 and prove (ii) only for Hölder spaces, since the proof in the other case is 

similar. By Theorem 7.2 [3], there exists F̄ ∈ Cl+1,α
(
�;�k−1

)
such that F̄ ∈ C ( f1 − f0) and δ F̄ = 0 in �. We use (i) to 

conclude that d( F̄ − Ā) = 0 in �, δ( F̄ − Ā) = 0 in � and ν ∧ ( F̄ − Ā) = 0 on ∂�. Hence, by Theorem 6.5 [3], F̄ = A, which 
concludes the proof. �
Remark 5. (i) When c (A) = 1

p |A|p with 1 < p < 2, we conjecture that A ∈ C0,α , for some α > 0, is in general the best 
regularity that can be expected. Indeed, it is proven in [8] that when q �= 2, the solution to

d

(
δh̄

∣∣∣δh
∣∣∣q−2

)
= 0

satisfies h̄ ∈ C0,α locally for some α > 0. One can anticipate that it should be possible to extend this result to the non-zero 
right-hand side f1 − f0. Note also that C0,α is, in general, the optimal regularity for δh when the system of equations 
reduces to the so-called q-Laplacian scalar equation.

(ii) The same analysis is valid when k = n under the natural hypothesis (6).

Theorem 6. The maximum of D over {h ∈ W 1,q(�, �k) : |δh| ≤ 1} is achieved at h̄ such that ∇c( Ā) = δh̄ and it can moreover be 
assumed to verify dh̄ = 0 in � and ν ∧ h̄ = 0 on ∂�. Furthermore, (P) and (D) are dual of each other.
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Proof. Since Ā ∈ Lp(�; �k−1), the growth condition on |∇c| in (9) and that on c in (7) imply ∇c( Ā) ∈ Lq(�; �k−1). We use 
(11) and Theorem 7.2 [3] to find h̄ ∈ W 1,q(�, �k) such that ∇c( Ā) = δh̄ in �, dh̄ = 0 in � and ν ∧ h̄ = 0 on ∂�.

Let h ∈ W 1,q(�, �k) and A ∈ C( f1 − f0). We first use that c and c∗ are Legendre transform of each other, we then use 
the fact that A ∈ C( f1 − f0) to obtain∫

�

(
c(A) + c∗(δh)

)
dx ≥

∫
�

〈A; δh〉dx =
∫
�

〈 f1 − f0;h〉dx. (13)

The inequality in (13) becomes an equality if (A, δh) = ( Ā, δh̄). Rearranging, we have proven that I(A) > D(h) and equality 
holds if ∇c( Ā) = δh̄. �
Definition 7. For f ∈ C(0) and f0, f1 as above, we define

| f |p = inf
A∈C( f )

⎛
⎝ ∫

�

|A|p

⎞
⎠

1/p

, Mp ( f0, f1) = | f1 − f0|p .

Recall that C ( f1 − f0) is the set of (k − 1)-forms A ∈ L1
(
�;�k−1

)
verifying, in the weak sense,

dA + f1 − f0 = 0 in � and ν ∧ A = 0 on ∂�.

The first claim in Proposition 8 implies the second one. When p = 1, C( f ) has to be replaced by the set of currents (cf. 
Section 4).

Proposition 8 (Metrics for k-forms). Let 1 ≤ p < ∞. Then |·|p is a norm and Mp (·, ·) is a distance.

Remark 9. (i) When 1 < p < ∞, then there exists a unique geodesic of Mp of minimal length connecting f0 to f1. It is 
independent of p and is given by (1 − t) f0 + t f1.

(ii) When k = n, M2 has been studied by Brenier [2] and M1 is the Monge–Kantorovich metric [1,7].

4. The case of linear growth

Here, f0, f1 ∈ Lp
(
�;�k

)
are still two k-forms such that (10) holds in the weak sense. In this section, we plan to replace 

the strictly convex smooth super linear cost c(A) of the previous section by the “linear cost” |A|. In that case, we expect (1)
to have multiple solutions. We postpone the study of the question, which is to characterize the optimal paths ( f̄ , Ā) such 
that f̄ �≡ (1 − t) f0 + t f1, to [5].

Definition 10. A (k − 1)-current A on � is a linear form on Cc
(
R

n;�k−1
)

whose support is contained in � and whose 
total mass is finite. By the Riesz representation theorem, there exists a collection of 

( n
k−1

)
signed Radon measures Ai1 ···ik−1 , 

1 ≤ i1 < · · · < ik−1 ≤ n, supported by � with finite total mass that represents A in the following sense:

A ( f ) =
∑

1≤i1<···<ik−1≤n

∫
�

f i1···ik−1 Ai1···ik−1 (dx) =:
∫
�

〈A (dx) ; f 〉,

when

f =
∑

1≤i1<···<ik−1≤n

fi1···ik−1 dxi1 ∧ · · · ∧ dxik−1 ∈ Cc

(
R

n;�k−1
)

.

Define

||A|| := sup
f

{
|A ( f ) | : f ∈ Cc

(
R

n) : ‖ f ‖L∞ ≤ 1
}

=
∫
�̄

|A|. (14)

Definition 11. The set C∗ ( f1 − f0) is the set of (k − 1)-currents A on � such that∫
�

〈A (dx) ; δh〉 =
∫
�

〈 f1 − f0;h〉 for every h ∈ C1
(
�;�k

)
. (15)

We have C ( f1 − f0) ⊂ C∗ ( f1 − f0) and so, by Remark 3 (i), theses sets are not empty. We define F∞ to be the set of 
h ∈ ∩s≥1W 1,s

(
�;�k

)
such that ‖δh‖L∞ ≤ 1. We set
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I∗1 (A) = ||A|| : A ∈ C∗ ( f1 − f0) , and D∞ (h) =
∫
�

〈 f1 − f0;h〉 , h ∈ F∞.

The problem at hand, which we denote by (P∗
1), consists in minimizing I∗1 over C∗ ( f1 − f0). We denote by (D∞) the 

problem of maximizing D∞ over F∞ .
Let r ∈ (1, p) and r′ = r/(r − 1) be its conjugate exponent. Since f0, f1 ∈ Lr(�; �k) we can apply the results of Section 3

to c(A) = |A|r/r and denote by Ar the unique minimizer of (P ) and by hr the unique maximizer of (D).

Theorem 12. (i) Up to a subsequence, (Ar)r converges weak � to some A∗
1 ∈ C∗ ( f1 − f0) and (hr)r converges weakly to some h∞ in 

W 1,s , for every s ∈ (1, ∞), as r tends to 1. Moreover ‖δh∞‖L∞ ≤ 1.
(ii) A∗

1 minimizes 
(

P∗
1

)
, h∞ maximizes (D∞) and duality holds, i.e.

I∗1
(

A∗
1

) = inf
(

P∗
1

) = sup (D∞) = D∞ (h∞) .

Proof. Step 1. Let F ∈ W 1,p
(
�;�k−1

)
be given by Remark 3. For r < p, we first use Hölder inequality, then Theorem 6 to 

obtain Ar |Ar |r−2 = δhr and the minimality property of Ar to obtain

||F ||rLr ≤ ||F ||rLp |�|1− r
p , ||δhr ||r′

Lr′ = ||Ar ||rLr , ||Ar ||Lr ≤ ||F ||Lr . (16)

The first and last inequalities in (16) prove that {||Ar ||Lr : r ∈ (1, p)} and so, {||Ar ||L1 : r ∈ (1, p)} are bounded by a 
constant C . Thus, up to a subsequence, (Ar)r converges narrowly to a (k − 1)-current A∗

1 on �. We conclude that A∗
1 ∈

C∗ ( f1 − f0) by using the fact that since Ar ∈ C( f1 − f0), we have for any h ∈ C1
(
�̄; �k

)
∫
�

〈 f1 − f0;h〉 = lim
r→1

∫
�

〈Ar; δh〉 =
∫
�

〈
A∗

1 (dx) ; δh
〉
.

Step 2. If s ≤ r′ then by Hölder inequality ||δhr ||Ls ≤ ||δhr ||Lr′ |�| 1
s − 1

r′ . This, together with (16) implies

||δhr ||Ls ≤ ||F ||
r
r′
L p |�| 1

s − r−1
p . (17)

Hence, {||δhr ||Ls }r is bounded by a constant Cs depending on s but independent of r < s/(s − 1). Since dhr = 0 in � and ν ∧
hr = 0 on ∂�, Theorem 5.21 [3] yields that {hr}r is weakly pre-compact in W 1,s . Hence, up to a subsequence, {hr}r converges 
to some h∞ weakly in W 1,s . By a diagonal sequence argument, we can choose a common subsequence for any s ∈ {n +1, n +
2, · · · } to obtain that h∞ is independent of s. The Sobolev embedding theorem yields that up to a subsequence (hr)r con-
verges uniformly to h∞ . Letting r tend to 1 and then s tend to ∞ in (17) we have ||δh∞||L∞ ≤ 1. These show that (i) holds.

Step 3. The proof of the fact that the graph of I∗1 is above that of D∞ can be given as in (13). We use first the duality 
(P ) = (D) for c(A) = |A|r/r and then the second identity in (16) to obtain that 

∫
�
〈 f1 − f0; hr〉dx = ||Ar ||rLr . Thus, by the 

weak lower semi-continuity of the total variations,∫
�

∣∣A∗
1

∣∣ (dx) ≤ lim
r→1+

∫
�

|Ar | ≤ lim
r→1+

||Ar ||r |�| 1
r′ = lim

r→1+

( ∫
�

〈 f1 − f0;hr〉dx
) 1

r |�| 1
r′ =

∫
�

〈 f1 − f0;h∞〉dx. (18)

Thus, since the graph of I∗1 is above that of D∞ and (18) reads off D∞(h∞) ≥ I∗1(A1), then (ii) holds. �
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