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The connectivity of graphs of simplicial and polytopal complexes is a classical subject 
going back at least to Steinitz, and the topic has since been studied by many authors, 
including Balinski, Barnette, Athanasiadis, and Björner. In this note, we provide a unifying 
approach that allows us to obtain more general results. Moreover, we provide a relation 
to commutative algebra by relating connectivity problems to graded Betti numbers of the 
associated Stanley–Reisner rings.
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r é s u m é

La connexité des graphes des complexes simpliciaux et polytopaux est un sujet classique 
remontant au moins à Steinitz. Il a été étudié depuis par de nombreux auteurs, dont 
Balinski, Barnette, Athanasiadis et Björner. Dans cette note, nous présentons une approche 
unifiée nous permettant d’obtenir des résultats plus généraux. De plus, nous faisons un 
lien avec l’algèbre commutative en rapprochant les problèmes de connexité des nombres 
de Betti gradués des anneaux de Stanley–Reisner associés.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A graph G is said to be k-connected if it has at least k vertices and removing any subset of vertices of cardinality less 
than k results in a connected graph. The connectivity number κG of G is the maximum number k such that G is k-connected.

The classical Steinitz’s theorem [8] (see also [9, Lecture 4]) asserts that a graph G is the underlying graph (1-skeleton) of a 
3-polytope if and only if G is 3-connected and planar. In 1961, Balinski extended the “only if” direction of Steinitz’s theorem 
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by showing that the underlying graph of a d-polytope is d-connected, cf. [9, p. 95]. David Barnette showed that the same 
bound is also valid for the connectivity number of underlying graphs of (d − 1)-dimensional simplicial pseudomanifolds [2].

Athanasiadis [1] showed that if the pseudomanifold is a flag simplicial complex (i.e. the clique complex of its 1-skeleton), 
then this lower bound can be improved to 2d −2. Björner and Vorwerk quantified this connection using the notion of banner 
simplicial complexes [4].

The purpose of this note is to provide a unifying approach that allows us to obtain more general results in the simplicial 
case.

2. Basics in commutative algebra

Our aim in this section is to relate global properties of a simplicial complex to the connectivity number of its underlying 
graph using the Hochster formula from commutative algebra. We start by recalling some notions, and refer to [7,6] for exact 
definitions and more details.

Let � be a simplicial complex on the vertex set [n] := {1, . . . , n}. Let k be a field and S = k[x1, . . . , xn] the polynomial 
ring in n variables over k. The Stanley–Reisner ideal I� ⊂ S of � is the ideal generated by monomials xF := ∏

i∈F xi for all F
not in �. The quotient ring k[�] = S/I� is called the face ring of �. Let

Fk[�] := 0 → F p → F p−1 → ·· · → F1 → F0 → k[�] → 0,

be the minimal graded free resolution of k[�], with Fi = ⊕
j S(− j)bi, j in homological degree i. The number bi, j = bi, j(k[�])

is the graded Betti number of S/I in homological degree i and internal degree j. The length of the j-th row in the Betti table 
will be denoted by lp j(k[�]), that is

lp j(k[�]) := max{i | bi,i+ j−1(k[�]) �= 0}.
We also denote by ti(k[�]) the maximum internal degree of a minimal generator in the homological degree i that is max{ j |
bi, j �= 0}. The projective dimension of k[�] is the maximum i such that bi, j �= 0, for some j. The regularity of k[�] is defined 
to be maxi{ti(k[�]) − i}.

Definition 1. Let � be a simplicial complex such that k[�] has regularity r. Set m = lpr+1(k[�]). We say S/I satisfies the 
property A if

(1) lp2(k[�]) ≤ m,
(2) bm−i,m−i+1(k[�]) ≤ bi,i+r−1(k[�]), for all 0 ≤ i ≤ m.

We also say that k[�] satisfies the property Bs if for all i < s one has ti(k[�]) < r + i − 1.

Remark 2 (Relations to Poincaré duality and the flag property).

(1) If � is Gorenstein, then it satisfies the property A. However, the property only requires a much simpler property than 
Poincaré–Lefschetz duality; a simple inequality shall be enough, see Lemma 7.

(2) If � is flag, then it is easy to see that it ts(k[�]) ≤ 2s for all s and therefore k[�] satisfies Br−1.

Proposition 3. Let � be a simplicial complex such that k[�] has regularity r. Moreover, assume that k[�] satisfies the properties A
and Bs . Then one has

s ≤ lpr+1(k[�]) − lp2(k[�]).

Proof. We have

lpr+1(k[�]) − lp2(k[�]) = m − max{ j | b j, j+1(k[�]) �= 0}
= min{m − j | b j, j+1(k[�]) �= 0}
≥ min{m − j | bm− j,m− j+r−1(k[�]) �= 0} (Property A)

= min{k | bk,k+r−1(k[�]) �= 0}
≥ min{k | tk(k[�]) ≥ k + r − 1}

where the last term is at least s by Property Bs . �
The following observation relates our study to the connectivity number.
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Observation 4. Let � be a simplicial complex on the vertex set [n] and κ be the connectivity number of its underlying 
graph. Then one has

κ + lp2(k[�]) = n − 1.

Proof. We consider (throughout) homology to be computed with k-coefficients. By Hochster’s formula [6, Theorem 8.1.1], it 
suffices to observe that

κ = n − max
{

#W : H̃0(XW ) �= 0
} = n − 1 − lp2(k[�]).

Alternatively (and algebraically) it suffices to observe that � and Cl(G), the clique complex of the underlying graph G of �, 
both have the same connectivity. Hence, it suffices to verify the result in the case of flag complexes and we may assume 
that � = Cl(G). The result follows from [5, Theorem 3.1]. �
Theorem 5. Let � be a (d − 1)-dimensional simplicial complex with nontrivial top-homology. Also, assume that k[�] satisfies the 
properties A and Bs . Then the underlying graph is (d + s − 1)-connected.

Proof. Note that the regularity of k[�] is equal to d since � has nontrivial top-homology. So, it follows from Proposition 3
that

s ≤ lpd+1(k[�]) − lp2(k[�]).
Note that lpd+1(k[�]) = n − d. So, by Observation 4 we get

s ≤ n − d − (n − κ� − 1),

where κ� stands for the connectivity number of the underlying graph of �. Therefore

κ� ≥ d + s − 1. �
Remark 6. As a special case of Theorem 5, we can consider � to be Gorenstein*. Then k[�] satisfies the property B1. 
Moreover, if � is also flag, then it satisfies the property Bd−1, since ti(k[�]) ≤ 2i for any i and k[�] has regularity d.

3. A Poincaré–Lefschetz-type inequality for minimal cycles

Recall that a minimal d-cycle � (w.r.t. a coefficient ring R) is a pure d-dimensional complex that supports precisely one 
homology d-class ζ whose support is the complex itself. For instance, every pseudomanifold is a minimal cycle (over Z/2Z); 
and so is every triangulation of a closed, connected manifold.

Lemma 7. Let � denote any minimal d-cycle and W a subset of the vertex-set V(�). Then

dim H̃0(�W ) ≤ dim H̃d−1(�V (�)\W ).

Proof. Since � supports a global d-cycle (by minimality), we have an injection

H0(�W ) ↪−→ Hd(�,� \ �W ).

To see this, notice that the restriction ζ̃ of the global d-cycle ζ to any component of (�, � \ �W ) is a relative cycle for 
(�, � \ �W ). Since � is a minimal d-cycle, this relative cycle is not a boundary.

Now, notice that � \�W admits an ambient deformation retraction in � to �V (�)\W (cf. [3, Lemma 4.27]). In particular, 
Hi(�, � \ �W ) ∼= Hi(�, �V (�)\W ) for all i ∈N. Finally, the exact sequence

0 −→ Hd(�) −→ Hd(�,�V (�)\W ) −→ Hd−1(�V (�)\W ) −→ · · ·
implies

dim Hd−1(�V (�)\W ) + dim H̃d(�)

≥ dim Hd(�,�V (�)\W )

≥ dim H0(�W ).

Recalling that dim H̃d(�) = 1 finishes the proof. �
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4. Applications to connectivity of pseudomanifold graphs

Let � be a (d − 1)-dimensional simplicial complex on the vertex set V(�). Recall the notion of banner complexes of [4]:

◦ a subset W of V(�) is called complete if every two vertices of W form an edge of �;
◦ a complete set W ⊆ V(�) is critical if W \ {v} is a face of � for some v ∈ W ;
◦ we say that � is banner if every critical complete set W of size at least d is a face of �;
◦ we define the banner number of � to be

b(�) = min

{
b : lkσ � is banner or the boundary of the 2-simplex

for all faces σ ∈ � of cardinality b and degree d

}
,

where the degree of a face is the maximal cardinality of a facet containing it.

Note that our notions of banner complexes and banner numbers are slightly more general then the ones introduced in [4]. 
However, if the complex is pure, the definitions coincide.

Lemma 8. Let � be a (d − 1)-dimensional simplicial complex.

(a) If σ is a face of degree d in �, then b(lkσ �) ≤ max{0, b(�) − #σ }.
(b) If � has nontrivial top-homology and b(�) < d − 2, then every induced subcomplex of � having nontrivial (d − 2)-homology has 

at least 2d − 2 − b(�) vertices.

Proof. The part (a) is clear from the definition. For claim (b), let us first show that, if � is banner, then every induced 
subcomplex � of � such that H̃d−2(�) �= 0 has at least 2d − 2 vertices by induction on d. If d = 3, this is clear because in 
this situation � must be flag.

Let d > 3. We may assume that no induced subcomplex of � has a nontrivial (d − 1)-dimensional cycle: indeed, such a 
subcomplex is forced to have dimension d − 1, so it would be banner and we could replace � with it. Furthermore, we may 
assume that � is a minimal induced subcomplex with the property that H̃d−2(�) �= 0. Under such a minimality assumption, 
for any vertex u of �, it follows from the exact sequence

H̃d−2(�V (�)\u) → H̃d−2(�) → H̃d−3(lku�)

that the link of u in � admits a nontrivial homology cycle in dimension d − 3. Also, it can be easily seen (from the banner 
property of �) that the 1-skeleton of � is not a complete graph. So, we may take a vertex v of � such that the vertex set of 
lkv� is a proper subset of V (�) \ u. Since lkv� is an induced subcomplex of lkv�, which is banner and admits a nontrivial 
(d − 3)-cycle, by induction lkv� has at least 2d − 4 vertices. And the conclusion follows in the banner case.

The claim (b) now follows by induction on the banner number and claim (a). �
Remark 9. While a flag simplicial complex (not necessarily of dimension d − 1) supporting a nontrivial (d − 1)-cycle has at 
least 2d vertices, this is false for banner complexes. Take the boundary of a d-simplex, and join one facet with an external 
edge: the resulting complex is a (d + 1)-dimensional banner complex supporting a nontrivial (d − 1)-cycle, but with only 
d + 3 vertices.

Lemma 10. Let � be a pure (d − 1)-dimensional complex with nontrivial top-homology. Then k[�] satisfies the property Bd−b(�)−1.

Proof. By Hochster’s formula [6, Theorem 8.1.1] we have that reg (k[�]) = d, since � has a nontrivial top-homology. If 
bi,i+d−1(k[�]) �= 0, then there must exist a subset W ⊆ V(�) of cardinality i + d − 1 such that �W supports a nontrivial 
(d − 2)-cycle. By part (b) of Lemma 8, thus:

i ≥ d − b(�) − 1. �
Theorem 11. Let � be a (d − 1)-dimensional minimal cycle. Then the underlying graph of � is (2d − b(�) − 2)-connected.

Proof. It follows from Hochster’s formula that bn−d,n(k[�]) = dim H̃d−1(�) �= 0. Thus, one has lpd+1(k[�]) = n − d. On the 
other hand, for a subset W of the vertices of � from Lemma 7 we have

dim H̃0(�V(�)\W ) ≤ dim H̃d−2(�W ).

Now, summing over all subsets W of cardinality i + d − 1, again by Hochster’s formula we get

bn−i−d,n−i−d+1(k[�]) ≤ bi,i+d−1(k[�]).
Hence, k[�] satisfies the property A. Now, since k[�] satisfies the property Bd−b(�)−1, Lemma 10 above, the result follows 
from Theorem 5. �
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Corollary 12. Let � be a flag (or more generally banner) (d − 1)-dimensional minimal cycle. Then the underlying graph of � is 
(2d − 2)-connected.

Proof. If � is a banner complex, then b(�) = 0. �
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