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In this note, we consider the Maximum Likelihood Estimator (MLE) of the vector parameter 
� = (θ, φT)T of dimension R (R > 1) used in crash-data modeling where θ > 0 and φ
belongs to the simplex of order R − 1. We prove the strong consistency of this constrained 
estimator making capital out of the cyclic form between the components of the MLE.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note, nous considérons l’estimateur du maximum de vraisemblance (EMV) du 
vecteur paramètre � = (θ, φT)T de dimension R (R > 1) utilisé dans la modélisation des 
données d’accidents où θ > 0 et φ appartient au simplexe d’ordre R − 1. Nous démontrons 
la consistance forte de cet estimateur sous contraintes en exploitant la forme cyclique entre 
les composantes de cet estimateur.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a Rd valued random variable defined on a probability space (�, A, P) with a probability density function 
depending on a vector parameter �. The Maximum Likelihood Estimator (MLE) �̂n of � can be obtained by solving the 
optimization problem

�̂n = arg max
�∈S

L(�)

where L is the log-likelihood function calculated on a sample of n i.i.d. observations of X and S is the parameter space (the 
set of all possible values of �).
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One of the most desired properties of the estimator �̂n is its consistency, i.e. its asymptotic convergence to the true 
value �0. This property was studied in the literature by many authors (see, e.g., [2,6,7,14,15]). The main result on the strong 
consistency was established by Wald [15], who gave regularity conditions under which the MLE is strongly consistent. How-
ever, all these conditions may be hard to check in practice if the dimension of the parameter space is large and the probabil-
ity density function (or the likelihood) takes some complex forms. Nevertheless, introducing modifications in Wald’s work, 
some authors, among which [5,6,12,14], obtained useful results on the consistency under less restrictive conditions. Van der 
Vaart [14] established general consistency properties of M-estimators presenting the MLE as a special case of M-estimators. 
But it is still possible that the MLE is not consistent even when it exists, as shown by the examples given in [4].

The present work is motivated by our need to provide a proof of the strong convergence property of the MLE of �
proposed in [10,11] for statistical analysis of accident data on an experimental site where observed accidents can be classi-
fied into R mutually exclusive categories, R ∈ N∗ . In their before–after study in order to assess the impact of a measure on 
the occurrence of accidents, N’Guessan et al. [10,11] considered a random vector X = (X11, . . . , X1R , X21, . . . , X2R)T whose 
components are positive non-zero discrete random variables such that X1r (resp. X2r ), r = 1, . . . , R , represents the num-
ber of crashes of type r that have occurred in the “before” (resp. “after”) period. This model also integrates a vector of 
known non-random components denoted by C = (c1, . . . , cR)T. It is assumed that X follows the multinomial distribution 
X ∼M(n; π1(�), π2(�)) where n denotes a positive integer representing the total number of independent accidents in both 
before and after periods, that is 

∑2
t=1

∑R
r=1 Xtr = n. Here π1(�) = (π11(�), . . . , π1R(�))T, π2(�) = (π21(�), . . . , π2R(�))T

with

π1r(�) = φr

1 + θ
∑R

j=1 c jφ j

, π2r(�) = θ crφr

1 + θ
∑R

j=1 c jφ j

, ∀r = 1, . . . , R (1)

and 
∑2

t=1
∑R

r=1 πtr(�) = 1. The random vector X has a probability density function depending on a multidimensional pa-
rameter � = (θ, φT)T, where θ ∈ R

∗+ and φ = (φ1, . . . , φR)T satisfies 
∑R

r=1 φr = 1 and belongs to the simplex of dimension 
R −1. The scalar θ represents the unknown average effect of the road safety measure, while each φr (r = 1, 2, . . . , R) denotes 
the global accident risk of type r before and after the application of the road safety measure. The coefficients c1, . . . , cR are 
given positive real numbers.

The existence of the constrained MLE �̂n of model (1) has been studied by [8] and an application is given in [11]. The 
numerical convergence properties of �̂n to the true values were recently studied by N’Guessan and Geraldo [10] using inten-
sive simulation studies. They found that the MLE �̂n given by (2) converges numerically to the true value of the parameter 
whenever n tends to +∞. We then make up their results by showing the strong convergence of �̂n given by (2) below.

So the aim of this note is to give a theoretical proof of the strong convergence of the estimator �̂n when n tends to 
infinity. The remainder of the note is organized as follows. In Section 2, we give some preliminary results. The main results 
on the strong convergence of the MLE in the crash control model are presented in Section 3. These main results are divided 
into three theorems. In Section 4, we present some concluding remarks.

2. Preliminary results

Throughout the paper, the subscript n is used to indicate that the estimators depend on the sample size n. It is proven 
in [9] that the log-likelihood associated with an observed data x = (x11, . . . , x1r, x21, . . . , x2r) satisfying 

∑2
t=1

∑R
r=1 xtr = n, is 

defined up to an additive constant by �(�) = ∑R
r=1[xr log(φr) + x2r log(θ) − xr log(1 + θ

∑R
m=1 cmφm)] where xr = x1r + x2r , 

r = 1, . . . , R . The MLE �̂n of � is then given by the following lemma.

Lemma 2.1. (See [8].) The components θ̂n and φ̂n of the MLE �̂n satisfy⎧⎪⎪⎨
⎪⎪⎩

θ̂n =
∑R

m=1 X2m( ∑R
m=1 cm φ̂n,m

)
×

( ∑R
m=1 X1m

)
φ̂n,r = 1

1− 1
n

∑R
m=1

θ̂ncm Xm
1+θ̂ncm

× Xr

n(1+θ̂n cr)
, r = 1,2, . . . , R

(2)

with Xr = X1r + X2r , r = 1, . . . , R.

Proof. Introducing a Lagrange multiplier in order to cope with the linear constraint 
∑R

r=1 φr = 1, �̂n is obtained as a 
solution of the non-linear system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R∑
r=1

[
x2r − xr

θ̂n
∑R

m=1 cmφ̂n,m

1 + θ̂n
∑R

m=1 cmφ̂n,m

]
= 0

xr − n
φ̂n,r(1 + cr θ̂n)

1 + θ̂
∑R c φ̂

= 0, r = 1,2, . . . , R.

(3)
n m=1 m n,m
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The first line of System (2) follows from the first line of (3). The expression of φ̂n is obtained by transforming the second 
line of (3) into a linear system whose unique vector solution is φ̂n . For further details, refer to [8,11] and the references 
therein. �

Let us recall some important lemmas that will be the key for establishing our strong convergence results. The first lemma 
is provided by the continuous mapping theorem of [14, p. 7]. The second is due to the strong law of large numbers. The 
third lemma states conditions under which the convergence of a sequence of injective functions ( fn) implies that of their 
inverses ( f −1

n ) [1, Theorem 2].

Lemma 2.2. (See [14].) Let g : Rk → R
m be continuous at every point of a Borel set A such that P(X ∈ A) = 1. If Xn converges almost 

surely (a.s.) to X, then g(Xn) converges almost surely to g(X).

Lemma 2.3. If the random vector X = (X11, . . . , X1R , X21, . . . , X2R) has the multinomial distribution M(n; π) with π =
(π11, . . . , π1R , π21, . . . , π2R) then, as n → +∞: 1

n X
a.s.−→ (π11, . . . , π1R , π21, . . . , π2R).

Proof. The vector X can be thought of as the sum of n independent multinomial vectors Y1, . . . , Yn with parameters 1
and π . Then, the mathematical expectation of Yi is E(Yi) = π . By the strong law of large numbers, the random sequence 
n−1 X converges almost surely to π . �

The following lemmas are related to the uniform convergence of sequences of functions on a metric space.

Lemma 2.4. (See [1].) If ( fn) is a sequence of injection mappings on a metric space E, taking values in a locally compact metric space 
G and converging uniformly to f on E and if f −1 is a continuous mapping on G1 ⊂ G, then f −1

n converges uniformly to f −1 on every 
compact set contained in int(G1) ∩ (∩n fn(E)) where int(G1) denotes the interior of G1.

Lemma 2.5. (See [13].) Let fn be a sequence of continuous functions on a set D. If fn converges uniformly to f , then fn(un) converges 
to f (u) for all sequences un in D convergent to u ∈ D.

3. Main results

Theorem 3.1. As n tends to +∞, the random variable θ̂n converges a.s. to θ0 if and only if the random vector φ̂n converges a.s. to φ0.

Proof. We know that φ̂n = (φ̂n,1, . . . , φ̂n,R) ∈ R
R converges a.s. to φ0 = (φ0

1 , . . . , φ0
R) ∈ R

R if and only if, for all r = 1, . . . , R , 
φ̂n,r → φ0

r a.s. Thus, it is sufficient to prove that for all r = 1, . . . , R , θ̂n −→ θ0 a.s. implies that φ̂n,r −→ φ0
r a.s. Now let us 

suppose that θ̂n → θ0 a.s. Observing that 
∑R

m=1 Xm = n, we get

φ̂n,r = (X1r + X2r) /(1 + θ̂ncr)∑R
m=1 (X1m + X2m) /(1 + θ̂ncm)

. (4)

Moreover, we can write φ̂n,r = gr(
X11
n , . . . , X1R

n , X21
n , . . . , X2R

n , θ̂n) where gr is the continuous function from R2R+1 to R
defined by (b1, . . . , bR , a1, . . . , aR , θ) 
→ (br+ar )/(1+θcr )∑R

m=1(bm+am)/(1+θcm)
. Using Lemma 2.3, we have almost surely(

X11

n
, . . . ,

X1R

n
,

X21

n
, . . . ,

X2R

n
, θ̂n

)
→ (π0

11, . . . ,π
0
1R ,π0

21, . . . ,π
0
2R , θ0)

as n → ∞. Applying the continuous mapping theorem (Lemma 2.2) and relations (1), we get as n → +∞,

φ̂n,r →
(
π0

1r + π0
2r

)
/(1 + θ0cr)∑R

m=1

(
π0

1m + π0
2m

)
/(1 + θ0cm)

= φ0
r a.s.

This proves that φ̂n,r converges to φ0
r a.s.

Now let us assume that φ̂n −→ φ0 a.s. or equivalently φ̂n,r −→ φ0
r a.s. for all r = 1, . . . , R . From Lemma 2.1, we get

θ̂n =
∑R

m=1(X2m/n)∑R
m=1(X1m/n)

× 1∑R
m=1 cm φ̂n,m

= g

(
X11

n
, . . . ,

X1R

n
,

X21

n
, . . . ,

X2R

n
, φ̂n,1, . . . , φ̂n,R

)

where g is the continuous function defined from R3R to R by

(b1, . . . ,bR ,a1, . . . ,aR , φ1, . . . , φR) 
→
∑R

m=1 am∑R
m=1 bm

× 1∑R
m=1 cm φm

.
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We again apply Lemmas 2.2 and 2.3 and get

θ̂n
a.s.−−−→

n→+∞ g(π0
11, . . . π

0
1R ,π0

21, . . . ,π
0
2R , φ0

1 , . . . , φ0
R) = θ0. �

Theorem 3.1 shows that the almost sure convergence of φ̂n to φ0 is equivalent to the almost sure convergence of θ̂n to θ0. 
To prove that the MLE �̂n = (θ̂n, φ̂T

n )T converges almost surely, it is then sufficient by Theorem 3.1 to prove for example that 
θ̂n converges almost surely to θ0. With that in mind, we first prove that the a.s. limit of θ̂n exists and then show that this 
a.s. limit is equal to θ0.

The following result shows the almost sure convergence of θ̂n .

Theorem 3.2. There exists a constant μ > 0 and a subset N ⊂ � such that P(N) = 0 and

∀ω ∈ � \ N, lim
n→∞ θ̂n(ω) = μ. (5)

Proof. Set ϕn(u) = ∑R
m=1

Xm/n
1+u cm

, u ∈]0, +∞[ and for all t = 1, 2, denote Xt+ = ∑R
m=1 Xtm .

We first show that for all ω ∈ �, the real valued function ϕω,n(u) = ϕn(u)(ω) =
R∑

m=1

Xm(ω)/n

1 + ucm
is a continuous bijective 

mapping from ]0, +∞[ to ]0, 1[ and that θ̂n(ω) = ϕ−1
ω,n(X1+(ω)/n).

By Equation (4), we have the relationship φ̂n,r = Xr/(1+θ̂ncr)∑R
m=1 Xm/(1+θ̂ncm)

which enables to write

R∑
r=1

cr φ̂n,r =
∑R

r=1

(
cr Xr/(1 + θ̂ncr)

)
∑R

m=1

(
Xm/(1 + θ̂ncm)

) .

By the first line of System (2) in Lemma 2.1, we have

θ̂n = X2+
X1+

1∑R
m=1 cmφ̂n,m

= X2+
X1+

∑R
m=1

(
Xm/(1 + θ̂ncm)

)
∑R

r=1

(
cr Xr/(1 + θ̂ncr)

) .

This is equivalent to

X2+
X1+

R∑
m=1

Xm

1 + θ̂ncm
=

R∑
m=1

θ̂ncm Xm

1 + θ̂ncm
.

We then deduce that 
∑R

m=1
Xm

1+θ̂ncm
= X1+ . Divide the last equality by the sample size n and get

R∑
m=1

Xm(ω)/n

1 + θ̂n(ω) cm
= X1+(ω)

n
, ∀ω ∈ �. (6)

It is obvious that the random real function ϕω,n(u) has a strictly negative derivative with respect to u and satisfies for all 
ω ∈ �:

1 = lim
u→0

ϕω,n(u) =
R∑

m=1

Xm(ω)/n 0 = lim
u→+∞ϕω,n(u).

Hence ϕω,n(u) is a continuous and bijective mapping from ]0, +∞[ to ]0, 1[ and since X1+(w)/n ∈ ]0, 1[, Equation (6)
yields θ̂n(ω) = ϕ−1

ω,n(X1+(ω)/n).
Let us now prove that there exists a subset N ⊂ � with P(N) = 0 such that for all ω ∈ � \ N , the sequence of real 

functions ϕω,n(u) converges uniformly to some function ϕ(u) on ]0, +∞[. The almost sure convergence of the statistic 

ϕn(u) =
R∑

m=1

Xm/n

1 + ucm
to ϕ(u) will then follow.

For all m = 1, . . . , R , write Xm
n = gm( X11

n , . . . , X1R
n , X21

n , . . . , X2R
n ) where gm is the continuous mapping defined from R2R

to R by gm(b1, . . . , bR , a1, . . . , aR) = bm + am . Applying Lemmas 2.2 and 2.3, we get

Xm

n
a.s.−−→ α0

m = gm(π0
11, . . . ,π

0
1R ,π0

21, . . . ,π
0
2R) = (1 + θ0cm)φ0

m

1 + θ0
∑R c φ0

.

k=1 k k
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Equivalently [3, p. 68], there exists a null set Nm such that

∀ω ∈ � \ Nm, lim
n→∞

Xm(ω)

n
= α0

m. (7)

The set E1 = ∪R
m=1 Nm satisfies P(E1) = 0 and

∀ω ∈ � \ E1, lim
n→∞ϕω,n(u) = lim

n→∞

R∑
m=1

Xm(ω)/n

1 + u cm
=

R∑
m=1

α0
m

1 + u cm
= ϕ(u). (8)

Thus we have proved that for all ω ∈ � \ E1, the sequence of functions ϕω,n converges simply to ϕ on ]0, +∞[. Moreover,

sup
u∈]0,+∞[

|ϕω,n(u) − ϕ(u)| = sup
u∈]0,+∞[

∣∣∣∣∣
R∑

m=1

Xm(ω)/n

1 + u cm
−

R∑
m=1

α0
m

1 + u cm

∣∣∣∣∣ � sup
u∈]0;+∞[

R∑
m=1

∣∣∣∣ Xm(ω)/n − α0
m

1 + u cm

∣∣∣∣
= sup

u∈]0,+∞[

R∑
m=1

|Xm(ω)/n − α0
m|

1 + u cm
�

R∑
m=1

|Xm(ω)/n − α0
m|

because ∀u ∈]0, +∞[, ∀cm > 0, 1
1+u cm

� 1. It follows by (7) that

sup
u∈]0,+∞[

|ϕω,n(u) − ϕ(u)|�
R∑

m=1

|Xm(ω)/n − α0
m| −→ 0 as n → +∞.

This proves the uniform convergence of the sequence ϕω,n to ϕ on ]0, +∞[. �
Remark 1. In summary, we have proved that ϕω,n is a sequence of bijective functions taking values in ]0, 1[ that is locally 
compact. Moreover, ϕω,n converges uniformly to ϕ and ϕ−1 is continuous (as the inverse of a non-zero continuous function). 
Thus the conditions of Lemma 2.4 are satisfied and hence the sequence ϕ−1

ω,n converges uniformly to ϕ−1. Moreover, the 
sequence X1+/n satisfies

X1+
n

= g̃

(
X11

n
, . . . ,

X1R

n
,

X21

n
, . . . ,

X2R

n

)

where g̃ is the continuous mapping defined from R2R to R by g̃(b1, . . . , bR , a1, . . . , aR) = ∑R
m=1 bm . Apply again Lemmas 2.2

and 2.3 and get

X1+
n

a.s.−−→ g̃(π0
11, . . . ,π

0
1R ,π0

21, . . . ,π
0
2R) = 1

1 + θ0
∑R

k=1 ckφ
0
k

.

That is, there exists a null set E2 such that

∀ω ∈ � \ E2, lim
n→∞

X1+(ω)

n
= γ 0 = 1

1 + θ0
∑R

k=1 ckφ
0
k

.

The set N = E1 ∪ E2 satisfies P(N) = 0 and for all ω ∈ � \ N , the sequence X1+(ω)/n is convergent and hence is bounded. 
That is, there exists a compact set D ⊂]0, 1[ such that X1+(ω)/n ∈ D, ∀n > 0. Moreover, since

θ̂n(ω) = ϕ−1
ω,n

(
X1+(ω)

n

)

and ϕ−1
ω,n converges uniformly to ϕ , we apply Lemma 2.5 to conclude that

∀ω ∈ � \ N, θ̂n(ω) −→ μ = ϕ−1(γ 0) as n → ∞ (9)

where γ 0 is given above. This ends the proof of Theorem 3.2.

Theorem 3.3. Set β0 = ∑R
r=1 crφ

0
r . Let Fθ0 be the function from R+ to R defined by:

Fθ0(u) = u

(
R∑

m=1

cm(1 + θ0cm)φ0
m

1 + ucm

)
− θ0β0

(
R∑

m=1

(1 + θ0cm)φ0
m

1 + ucm

)
.

Then,

i) the function Fθ0 has θ0 as unique root on R+.
ii) the almost sure limit μ of θ̂n is equal to the unique root θ0 of Fθ0 on R+ .



1152 I.C. Geraldo et al. / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 1147–1152
Proof. i) We have Fθ0 (θ0) = 0 and F ′
θ0 (u) > 0. So Fθ0 is strictly monotone and satisfies

lim
u→0

Fθ0(u) < 0 and lim
u→+∞ Fθ0(u) > 0.

So we get the first assertion of the theorem.
ii) Let us assume that as n → +∞, θ̂n → μ a.s. Let us then divide the numerator and the denominator of θ̂n given by 

Lemma 2.1 by n2 and get

θ̂n =
∑R

m=1(X2m/n) × ∑R
m=1

Xm/n

1+θ̂ncm∑R
m=1(X1m/n) × ∑R

m=1
cm Xm/n

1+θ̂ncm

. (10)

By Lemma 2.3,∑R
m=1 X2m/n∑R
m=1 X1m/n

a.s.−−−→
n→+∞

∑R
m=1 π0

2m∑R
m=1 π0

1m

= θ0β0

and

Xr/n

1 + θ̂ncr
= X1r/n + X2r/n

1 + θ̂ncr

a.s.−−−→
n→+∞

π0
1r + π0

2r

1 + μ cr
= (1 + θ0cr)φ

0
r

(1 + θ0
∑R

m=1 cmφ0
m)(1 + μ cr)

.

Thus, as n → +∞, the first and the second hands of equation (10) yield, almost surely,

μ = θ0β0 ×
(

R∑
r=1

(1 + θ0cr)φ
0
r

(1 + μ cr)

)/(
R∑

r=1

cr(1 + θ0cr)φ
0
r

(1 + μ cr)

)
.

That is,

μ

R∑
r=1

cr(1 + θ0cr)φ
0
r

(1 + μ cr)
= θ0β0 ×

R∑
r=1

(1 + θ0cr)φ
0
r

(1 + μ cr)
,

which means that Fθ0 (μ) = 0 and hence μ = θ0 by i). This completes the proof of Theorem 3.3. �
Theorem 3.4. The MLE �̂n = (θ̂n, φ̂n)T converges a.s. to �0 = (θ0, φ0)T with φ0 = (φ0

1 , . . . , φ0
R)T .

Proof. This is a consequence of Theorem 3.1 and Theorem 3.3. Indeed, θ̂n converges a.s. to θ0 and since by Theorem 3.1, 
the consistency of θ̂n is equivalent to that of φ̂n , then φ̂n converges also almost surely to φ0. Thus the vector �̂n = (θ̂n, φ̂n)T

converges a.s. to the vector �0 = (θ0, φ0)T. �
4. Concluding remarks

We study the asymptotic strong consistency of a constrained maximum likelihood estimator of a vector parameter when 
a road safety measure has been applied to a target site. We intend to generalize our results to the multidimensional esti-
mator proposed in [9] when we deal with the estimation of the effect of a road-safety measure applied on different target 
sites. Each target site counts R (R > 1) mutually exclusive accidents types and is linked to a specific control area where the 
measure is not directly applied.
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