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When 1 < p < ∞, maps f in W 1/p,p((0, 1); S1) have W 1/p,p phases ϕ, but the
W 1/p,p-seminorm of ϕ is not controlled by the one of f . Lack of control is illustrated 
by “the kink”: f = eıϕ , where the phase ϕ moves quickly from 0 to 2π . A similar situation 
occurs for maps f : S1 → S

1, with Moebius maps playing the role of kinks. We prove that 
this is the only loss of control mechanism: each map f : S1 → S

1 satisfying | f |p
W 1/p,p ≤ M

can be written as f = eıψ
K∏

j=1

(Ma j )
±1, where Ma j is a Moebius map vanishing at a j ∈ D, 

while the integer K = K ( f ) and the phase ψ are controlled by M . In particular, we 
have K ≤ cp M for some cp . When p = 2, we obtain the sharp value of c2, which is 
c2 = 1/(4π2). As an application, we obtain the existence of minimal maps of degree one 
in W 1/p,p(S1; S1) with p ∈ (2 − ε, 2).

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Si 1 < p < ∞, les applications f appartenant à W 1/p,p((0, 1); S1) ont des phases ϕ dans 
W 1/p,p , mais la seminorme W 1/p,p de ϕ n’est pas contrôlée par celle de f . L’absence de 
contrôle est illustrée par « le pli » : f = eıϕ , où la phase ϕ augmente rapidement de 0 à 2π . 
Pour des applications f : S1 → S

1, le même phénomène apparaît, avec les transformations 
de Moebius jouant le rôle des plis. Nous prouvons que cet exemple est essentiellement le 

seul : toute application f : S1 → S
1 telle que | f |p

W 1/p,p ≤ M s’écrit f = eıψ

K∏
j=1

(Ma j )
±1, 

où Ma j est une transformation de Moebius s’annulant en a j ∈ D, tandis que l’entier 
K = K ( f ) et la phase ψ sont contrôlés par M . En particulier, nous avons K ≤ cp M pour 
une constante cp . Pour p = 2, nous obtenons la valeur optimale de c2, qui est c2 = 1/(4π2). 
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Comme application, nous obtenons l’existence d’une application minimale de degré un 
dans W 1/p,p(S1; S1) avec p ∈ ]2 − ε, 2[.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let 0 < s < 1, 1 ≤ p < ∞ and let f : (0, 1) → S
1 belong to the space W s,p . Then f can be written as f = eıϕ , where 

ϕ ∈ W s,p [3]. Once the existence of ϕ is known, a natural question is whether we can control |ϕ|W s,p in terms of | f |W s,p . 
For most of s, p, the answer is positive. The exceptional cases are provided precisely by the spaces W 1/p,p((0, 1); S1), with 
1 < p < ∞ [3]. In these spaces, lack of control is established via the following explicit example. For n ≥ 1, we define ϕn as 
follows:

ϕn(x) :=

⎧⎪⎨
⎪⎩

0, for 0 < x < 1/2

2πn(x − 1/2), for 1/2 < x < 1/2 + 1/n

2π, for 1/2 + 1/n < x < 1

.

Then |ϕn|W 1/p,p → ∞ (since ϕn → ϕ = 2π χ(1/2,1) a.e., and ϕ does not belong to W 1/p,p). On the other hand, if we extend 
un := eıϕn with the value 1 outside (0, 1) and still denote the extension un then, by scaling,

|un|W 1/p,p((0,1)) ≤ |un|W 1/p,p(R) = |u1|W 1/p,p(R) < ∞.

Thus |un|W 1/p,p((0,1)) � 1 and |ϕn|W 1/p,p((0,1)) → ∞. Finally, we invoke the fact that W 1/p,p phases are unique mod 2π [3].
If one considers instead maps f : S1 → S

1, always in the critical case f ∈ W 1/p,p , 1 < p < ∞, then a new phenomenon 
occurs: f has a degree deg f , and does not have a W 1/p,p phase at all when deg f �= 0 [11, Remark 10]. However, even 
if deg f = 0 (and thus f has a W 1/p,p phase ϕ), we have a loss-of-control phenomenon similar to the one on (0, 1). 
Indeed, let Ma(z) := a − z

1 − a z
, a ∈D, z ∈ D, be a Moebius transform (that we identify with its restriction to S1, Ma : S1 → S

1). 

Let fa(z) := z Ma(z), so that fa is smooth and deg fa = 0. One may prove (see below) that |Ma|W 1/p,p = |Id|W 1/p,p , and 
thus fa is bounded in W 1/p,p . However, if a → α = eıξ ∈ S

1, then the smooth phase ϕa of fa converges a.e. to ϕ(eıθ ) :={
ξ − θ, if ξ − π < θ < ξ

2π + ξ − θ, if ξ < θ < ξ + π
, which does not belong to W 1/p,p . (Here, uniqueness of the phases and convergence hold 

mod 2π .) Thus ϕa is not bounded as a → α ∈ S
1. On the other hand, the plot of ϕa shows that ϕa has a “kink shape”, and 

thus we have here the analog of the example on (0, 1).
There are evidences that this loss of control mechanism is the only possible one. For example, the phase of the kink is not 

bounded in W 1/p,p , but clearly is in W 1,1 (same for fa). Bourgain and Brézis [4] proved that for every f ∈ W 1/2,2((0, 1); S1), 
we may split f = eıψ v , with ψ and v = eıη satisfying

|ψ |W 1/2,2 � | f |W 1/2,2 and |η|W 1,1 = |v|W 1,1 � | f |2W 1/2,2 . (1)

Intuitively, one should think at v as at “the kink part of f ”. The above result was extended by Nguyen [18] to 1 < p < ∞: 
for every 1 < p < ∞ and every f ∈ W 1/p,p((0, 1); S1), we may split f = eıψ v , with ψ and v = eıη satisfying

|ψ |W 1/p,p ≤ C p | f |W 1/p,p and |η|W 1,1 = |v|W 1,1 ≤ C p | f |p
W 1/p,p . (2)

Here we present another result in this direction, written for simplicity on the unit circle.

Theorem 1. Let 1 < p < ∞ and M > 0. Then there exist constants cp and F (M) such that: every map f ∈ W 1/p,p(S1; S1) satisfying 

| f |p
W 1/p,p ≤ M can be written as f = eıψ

K∏
j=1

(Ma j )
ε j , with ε j ∈ {−1, 1},

K ≤ cp M, (3)

and

|ψ |p
W 1/p,p ≤ F (M). (4)

When p = 2, we may take c2 = 1/(4π2), and this constant is optimal.

Corollary 1. Let 1 < p < ∞ and let fn, f ∈ W 1/p,p(S1; S1) be such that fn ⇀ f in W 1/p,p . Then, up to a subsequence, there exist 
K ∈N, ε j ∈ {−1, 1}, a jn ∈ D, α j ∈ S

1 , j = 1, . . . , K , ψn ∈ W 1/p,p(S1; R), and a constant C , such that:
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i) fn = eıψn
∏K

j=1(Ma jn
)ε j f ;

ii) a jn → α j as n → ∞;
iii) ψn ⇀ C in W 1/p,p as n → ∞.

The theorem and the corollary are reminiscent of profile decompositions obtained in different, often geometrical, con-
texts. We mention, e.g., the work of Sacks and Uhlenbeck [19] on minimal 2-spheres, the analysis of Brézis and Coron [6–8]
of constant mean curvature surfaces, or the one of Struwe [20] of equations involving the critical Sobolev exponent. There 
are also abstract approaches to bubbling as in the work of Lions [16] about concentration-compactness or the characteriza-
tion of the lack of compactness of critical embeddings in Gérard [12], Jaffard [15] or Bahouri, Cohen and Koch [1].

Let us comment on the connection between (2) and our theorem. First, (2) has the following version for maps on S1: we 
may split f = eıψ v , with |ψ |W 1/p,p ≤ C p | f |W 1/p,p and |v|W 1,1 ≤ C p | f |W 1/p,p . Next, a Moebius map satisfies |Ma|W 1,1 = 2π , 
and thus∣∣∣∣∣∣

K∏
j=1

(Ma j )
ε j

∣∣∣∣∣∣
W 1,1

≤ 2π K ≤ 2π cp M. (5)

Estimate (5) shows that (3) is a refinement of the second part of (2). On the other hand, (4) is weaker than the first 
part of (2), since F (M) need not have a linear growth (and actually we do not have any control on F ). This suggests the 
following conjecture.

Conjecture. Let 1 < p < ∞. Then there exist constants cp, dp such that every f ∈ W 1/p,p(S1; S1) satisfying | f |p
W 1/p,p ≤ M can be 

decomposed as f = eıψ
K∏

j=1

(Ma j )
ε j , with ε j ∈ {−1, 1},

K ≤ cp M, (6)

and

|ψ |p
W 1/p,p ≤ dp M. (7)

In addition, when p = 2, we may take c2 = 1/(4π2).

2. Proofs

We start by recalling or establishing few auxiliary results. Given 1 ≤ p < ∞, f , fn will denote maps in W 1/p,p(S1; S1). 
When 1 < p < ∞, “⇀” refers to weak convergence in W 1/p,p .
1. Recall that, up to a multiplicative factor α ∈ S

1, the Moebius transforms give all the conformal representations u :D →D. 
In particular, Ma : S1 → S

1 is a smooth orientation preserving diffeomorphism, and thus deg Ma = 1. Consequence: if 
g : S1 → S

1 is continuous, then deg [g ◦ Ma] = deg g .
2. If 1 ≤ p < ∞ and a ∈ D, then | f ◦ Ma|W 1/p,p = | f |W 1/p,p . (Here, we let | f |W 1,1 := ´

S1 | ḟ | = ´ 2π
0 |d[ f (eıθ )]/dθ | dθ and, for 

1 < p < ∞, | f |p
W 1/p,p := ´

S1

´
S1 | f (x) − f (y)|p/|x − y|2 dx dy.) In order to prove the desired equality when p = 1, we write 

Ma(eıθ ) = eıϕ(θ) , 0 ≤ θ ≤ 2π , with ϕ smooth and increasing. Then

| f ◦ Ma|W 1,1 =
2πˆ

0

∣∣∣∣ d

dθ
[ f (eıϕ(θ))]

∣∣∣∣ dθ =
ϕ−1(2π)ˆ

ϕ−1(0)

∣∣∣∣ d

dθ
[ f (eıθ )]

∣∣∣∣ dθ =
2πˆ

0

∣∣∣∣ d

dθ
[ f (eıθ )]

∣∣∣∣ dθ = | f |W 1,1 .

When 1 < p < ∞, we rely on the following identity, valid for measurable functions F : S1 × S
1 → [0, ∞]:ˆ

S1

ˆ

S1

F (Ma(x), Ma(y))

|x − y|2 dx dx =
ˆ

S1

ˆ

S1

F (x, y)

|x − y|2 dx dx. (8)

Proof of (8): We have [Ma]−1 = Ma and thus, after change of variables, (8) amounts to

|x − y|2 |Ṁa(x)| |Ṁa(y)| = |Ma(x) − Ma(y)|2, ∀ x, y ∈ S
1. (9)

In turn, (9) follows immediately from the straightforward equality |Ṁa(x)| = 1 − |a|2
|1 − a x|2 .

3. If 1 ≤ p < ∞ and a ∈ D, then deg[ f ◦ Ma] = deg f . Indeed, to start with, such f has a degree, since W 1/p,p ↪→ VMO
and VMO maps gave a degree stable with respect to BMO convergence [11]. By item 1, the desired equality holds true 
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for smooth f . The general case follows by density of C∞(S1; S1) into W 1/p,p(S1; S1) [11, Lemmas A.11 and A.12] and by 
stability of the VMO degree.
4. If 1 ≤ p < ∞ and the degree of f is d, then we may write f (z) = eıψ(z) zd , with ψ ∈ W 1/p,p(S1; R). This follows easily 
from the fact that maps f ∈ W 1/p,p((0, 1); S1) lift within W 1/p,p [3].
5. Let 1 < p < ∞. For f ∈ W 1/p,p(S1; S1), let u = u( f ) be its harmonic extension. Set c′

p := inf{| f |p
W 1/p,p ; u(0) = 0}. Clearly, 

c′
p is achieved, and therefore c′

p > 0.

6. When p = 2, we have the following straightforward calculations: if f = ∑
n∈Z an eınθ , then | f |2

W 1/2,2 = 4π2 ∑
n∈Z |n| |an|2

[10, Chapter 13], and deg f = ∑
n∈Z n |an|2 [11, eq. (25)]. This leads to 4π2 | deg f | ≤ | f |2

W 1/2,2 , with equality e.g. when 
f (z) := zd . On the other hand, if u( f )(0) = 0, then a0 = 0 and thus

| f |2W 1/2,2 = 4π2
∑
n �=0

|n| |an|2 ≥ 4π2
∑
n �=0

|an|2 = 4π2
∑
n∈Z

|an|2 = 2π ‖ f ‖2
L2 = 4π2.

Thus c′
2 ≥ 4π2, and the example f (z) := z shows that c′

2 = 4π2.
7. For 1 < p < ∞, there exists some constant c′′

p such that c′′
p | deg f | ≤ | f |p

W 1/p,p , ∀ f ∈ W 1/p,p(S1, S1) [5, Corollary 0.5]. We 
let c′′

p be the best constant such that this estimate holds, and set c∗
p := min{c′

p, c′′
p}. We also set cp := 1/c∗

p . By item 6, for 
p = 2 we have c′′

2 = c′
2 = c∗

2 = 4π2, and c2 = 1/(4π2).
8. Let 1 < p < ∞. Let δ > 0 and assume that |u( f )| ≥ δ in D. Then there exists some C = C(δ, p) such that

f = eıψ , with ψ ∈ W 1/p,p(S1;R) and |ψ |W 1/p,p ≤ C | f |W 1/p,p . (10)

Indeed, set v := u/|u|, and write v = eıϕ , with smooth ϕ . By standard properties of the functional calculus and of trace 
theory, and by the lifting estimates in [3], we have ϕ ∈ W 2/p,p(D; R), and then ψ := trϕ ∈ W 1/p,p(S1; R) satisfies

|ψ |W 1/p,p ≤ C(p) |ϕ|W 2/p,p ≤ C(p) |v|W 2/p,p ≤ C(δ, p) |u|W 2/p,p ≤ C(δ, p) | f |W 1/p,p .

9. Let 1 < p < ∞ and c < c′
p . If | f |p

W 1/p,p ≤ c, then there exists some δ > 0 such that |u( f )| ≥ δ in D. Proof by contradiction: 
assume that | fn|p

W 1/p,p ≤ c, fn ⇀ g and |u( fn)(an)| ≤ 1/n. Since u(g ◦ Ma) = [u(g)] ◦ Ma , we may assume (by item 2) that 
an = 0. We find that u( f )(0) = 0 and | f |p

W 1/p,p < c′
p , which is impossible.

10. Let 1 < p < ∞. Assume that fn ⇀ f and fn → f a.e. Then | fn|p
W 1/p,p = | f |p

W 1/p,p + | fn f |p
W 1/p,p + o(1). Indeed, if we set 

gn := fn f , then this follows from the Brézis–Lieb lemma [9] and the identity

gn(x) [ fn(x) − fn(y)] = f (x) − f (y) + gn(x) f (y) [gn(x) − gn(y)].

Proof of Theorem 1. The proof is by complete induction on the integer part L := I(cp M) = I(M/c∗
p) of cp M . The case where 

L = 0 follows from items 8 and 9. Let L > 0 and let M be such that I(M/c∗
p) = L. Assume, by contradiction, that the theorem 

does not hold for M . We may thus find a sequence ( fn) with the following properties:
(a) | fn|p

W 1/p,p ≤ M;

(b) for any K ≤ L and any choice of a1, . . . , aK ∈ D and of signs ε j = ±1 such that 
∑K

j=1 ε j = deg fn , if we write fn =
eıψn

∏K
j=1(Ma j )

ε j , then we have |ψn|W 1/p,p → ∞. (It is always possible to take K , a j , ε j and ψn as above: it suffices to let 
K := | deg f | ≤ I(M/c′′

p) ≤ I(M/c∗
p) = L, ε j := sgn deg f , and a j = 0.)

By item 8 and property (b), there exist points an ∈ D such that u( fn)(an) → 0. By item 2, we may assume in addition 
that an = 0. Thus, in addition to (a) and (b), we may assume:
(c) fn ⇀ f and fn → f a.e., for some f with u( f )(0) = 0.

Set gn := fn f . By item 10 and the definition of c′
p , we have | f |p

W 1/p,p ≥ c′
p ≥ c∗

p , and |gn|p
W 1/p,p = M − | f |p

W 1/p,p + o(1). 
Let N > M − | f |p

W 1/p,p be such that I(N/c∗
p) = I((M − | f |p

W 1/p,p )/c∗
p) ≤ L − 1. For large n, we have |gn|p

W 1/p,p ≤ N . By the 
induction hypothesis, we may write (possibly up to a subsequence) gn = eıηn

∏R
j=1(Mb jn

)ε j , with |ηn|p
W 1/p,p ≤ F (N) and 

R ≤ N/c∗
p . On the other hand, if d := deg f , b jn := 0 and ε j := sgn d, then we may write f = eıη

∏R+|d|
j=R+1(Mb jn

)ε j , with 
η ∈ W 1/p,p (item 4). In addition, we have |d| ≤ | f |p

W 1/p,p /c′′
p (item 7). Finally, with ψn := ηn + η and K := R + |d| ≤ M/c∗

p , 
we have fn = eıψn

∏K
j=1(Mb jn

)ε j , and (ψn) is bounded in W 1/p,p . This contradiction completes the proof of the first part of 
the theorem.

Optimality of (3) when p = 2 follows from the fact that, by item 6, f (z) := zd , d > 0, satisfies | f |2
W 1/2,2 = c2 d and requires 

at least d Moebius maps in its decomposition. �
Proof of Corollary 1. By replacing fn with fn f , we may assume that fn ⇀ 1. Up to a subsequence, we may write 
fn = eıηn

∏P
j=1(Ma jn

)ε j , with a jn → α j ∈ D, j = 1, . . . , P , and ηn ⇀ η. With no loss of generality, we assume that 
α1, . . . , αK ∈ S

1 and αK+1, . . . , αP ∈ D. Since (clearly) Ma jn
⇀ α j , j = 1, . . . , K , we find that 1 = eı(η−C)

∏P
j=K+1(Mα j )

ε j

for some appropriate C . Thus, with ζn := ηn − η, we have
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fn = eı(ζn+C)
K∏

j=1

(Ma jn
)ε j

P∏
j=K+1

(
Ma jn

M−1
α j

)ε j = eıψn

K∏
j=1

(Ma jn
)ε j ,

for some ψn such that ψn − ζn → C in W 1/p,p , and thus ψn ⇀ C . �
Remark. The corollary implies the “bubbling-off of circles along a sequence of graphs”. More specifically, the behavior 
of weakly converging sequences of manifold-valued maps can be investigated within the theory of Cartesian currents of 
Giaquinta, Modica and Souček [13]; see also [14,17] for the specific case of W 1/2,2(S1; S1). When p = 2, it is possible 
to define (as a current) the graph G f of f ∈ W 1/2,2(S1; S1). With the notation in the corollary, if p = 2 and fn ⇀ f , 
“bubbling-off” reads

G fn ⇀ G f +
K∑

j=1

ε j δα j × [S1] in D1(S
1 × S

1). (11)

This can be obtained directly from (1) [17, Proposition 3.1], but also as an immediate consequence of the corollary. 
Details are left to the reader.

3. Applications

We start with an immediate consequence of Theorem 1.

Corollary 2. Let d be a non-negative integer and δ > 0. Then there exists a constant F (d, δ) such that: every map f ∈ W 1/2,2(S1; S1)

satisfying deg f = d and | f |2
W 1/2,2 ≤ 4π2 (d + 1) − δ can be written as f = eıψ

∏d
j=1 Ma j , with |ψ |2

W 1/2,2 ≤ F (d, δ).

Corollary 2 with d = 1, as well as a weak version of the corollary when d ≥ 2 were obtained in [2, Theorem 4.4, Theo-
rem 4.8]. As an application of Corollary 2, we obtain the following theorem.

Theorem 2. There exists some ε > 0 such that, for p ∈ (2 − ε, 2],
mp := min{| f |p

W 1/p,p ; deg f = 1}
is achieved.

Proof. When p = 2, it follows from item 6 that m2 is achieved by multiples of Moebius maps.
When 1 < p < 2, consider a minimizing sequence for mp . Since mp ≤ |Id|p

W 1/p,p := I p , we may assume that

| fn|p
W 1/p,p ≤ I p → I2 = 4π2 as p → 2. (12)

On the other hand, when f : S1 → S
1 we have | f |2

H1/2 ≤ 22−p | f |p
W 1/p,p . Thus

| fn|2H1/2 ≤ J p := 22−p I p → 4π2 as p → 2. (13)

For p sufficiently close to 2 and fixed δ > 0, we have J p ≤ 8π2 − δ. We next apply Corollary 2 to fn and write fn =
eıψn Man , with |ψn|W 1/2,2 ≤ F (1, δ). Set gn := fn ◦ Man . By item 2, (gn) is a minimizing sequence for mp . On the other hand, 
we have gn = eıϕn Id, with ϕn := ψn ◦ Man bounded in W 1/2,2(S1; R) (by (8)). Therefore, up to a subsequence ϕn ⇀ ϕ in 
W 1/2,2, and thus gn ⇀ g := eıϕ Id in W 1/2,2. We find that deg g = 1. Since (gn) is bounded in W 1/p,p , we obtain that 
gn ⇀ g in W 1/p,p . By a standard argument, g achieves mp . �
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