Mathematical analysis

# Profile decomposition and phase control for circle-valued maps in one dimension 

# Décomposition en profils et contrôle des phases des applications unimodulaires en dimension un 

## Petru Mironescu

Université de Lyon, Université Lyon-1, CNRS UMR 5208, Institut Camille-Jordan, 43 bd du 11-Novembre-1918, 69622 Villeurbanne cedex, France

## A R T I C L E IN F O

## Article history:

Received 18 September 2015
Accepted 30 September 2015
Available online 31 October 2015
Presented by Haïm Brézis


#### Abstract

When $1<p<\infty$, maps $f$ in $W^{1 / p, p}\left((0,1) ; \mathbb{S}^{1}\right)$ have $W^{1 / p, p}$ phases $\varphi$, but the $W^{1 / p, p}$-seminorm of $\varphi$ is not controlled by the one of $f$. Lack of control is illustrated by "the kink": $f=\mathrm{e}^{\iota \varphi}$, where the phase $\varphi$ moves quickly from 0 to $2 \pi$. A similar situation occurs for maps $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$, with Moebius maps playing the role of kinks. We prove that this is the only loss of control mechanism: each map $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ satisfying $|f|_{W^{1 / p, p}}^{p} \leq M$ can be written as $f=\mathrm{e}^{\imath \psi} \prod_{j=1}^{K}\left(M_{a_{j}}\right)^{ \pm 1}$, where $M_{a_{j}}$ is a Moebius map vanishing at $a_{j} \in \mathbb{D}$, while the integer $K=K(f)$ and the phase $\psi$ are controlled by $M$. In particular, we have $K \leq c_{p} M$ for some $c_{p}$. When $p=2$, we obtain the sharp value of $c_{2}$, which is $c_{2}=1 /\left(4 \pi^{2}\right)$. As an application, we obtain the existence of minimal maps of degree one in $W^{1 / p, p}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ with $p \in(2-\varepsilon, 2)$. © 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.


## R É S U M É

Si $1<p<\infty$, les applications $f$ appartenant à $W^{1 / p, p}\left((0,1) ; \mathbb{S}^{1}\right)$ ont des phases $\varphi$ dans $W^{1 / p, p}$, mais la seminorme $W^{1 / p, p}$ de $\varphi$ n'est pas contrôlée par celle de $f$. L'absence de contrôle est illustrée par «le pli» : $f=\mathrm{e}^{l \varphi}$, où la phase $\varphi$ augmente rapidement de 0 à $2 \pi$. Pour des applications $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$, le même phénomène apparaît, avec les transformations de Moebius jouant le rôle des plis. Nous prouvons que cet exemple est essentiellement le seul : toute application $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ telle que $|f|_{W^{1 / p, p}}^{p} \leq M$ s'écrit $f=\mathrm{e}^{\imath \psi} \prod_{j=1}^{K}\left(M_{a_{j}}\right)^{ \pm 1}$, où $M_{a_{j}}$ est une transformation de Moebius s'annulant en $a_{j} \in \mathbb{D}$, tandis que l'entier $K=K(f)$ et la phase $\psi$ sont contrôlés par $M$. En particulier, nous avons $K \leq c_{p} M$ pour une constante $c_{p}$. Pour $p=2$, nous obtenons la valeur optimale de $c_{2}$, qui est $c_{2}=1 /\left(4 \pi^{2}\right)$.

[^0]Comme application, nous obtenons l'existence d'une application minimale de degré un dans $W^{1 / p, p}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ avec $\left.p \in\right] 2-\varepsilon, 2[$.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## 1. Introduction

Let $0<s<1,1 \leq p<\infty$ and let $f:(0,1) \rightarrow \mathbb{S}^{1}$ belong to the space $W^{s, p}$. Then $f$ can be written as $f=\mathrm{e}^{\imath \varphi}$, where $\varphi \in W^{s, p}$ [3]. Once the existence of $\varphi$ is known, a natural question is whether we can control $|\varphi|_{W^{s, p}}$ in terms of $|f|_{W^{s, p}}$. For most of $s, p$, the answer is positive. The exceptional cases are provided precisely by the spaces $W^{1 / p, p}\left((0,1) ; \mathbb{S}^{1}\right)$, with $1<p<\infty$ [3]. In these spaces, lack of control is established via the following explicit example. For $n \geq 1$, we define $\varphi_{n}$ as follows:

$$
\varphi_{n}(x):= \begin{cases}0, & \text { for } 0<x<1 / 2 \\ 2 \pi n(x-1 / 2), & \text { for } 1 / 2<x<1 / 2+1 / n \\ 2 \pi, & \text { for } 1 / 2+1 / n<x<1\end{cases}
$$

Then $\left|\varphi_{n}\right|_{W^{1 / p, p}} \rightarrow \infty$ (since $\varphi_{n} \rightarrow \varphi=2 \pi \chi_{(1 / 2,1)}$ a.e., and $\varphi$ does not belong to $W^{1 / p, p}$ ). On the other hand, if we extend $u_{n}:=\mathrm{e}^{\imath \varphi_{n}}$ with the value 1 outside $(0,1)$ and still denote the extension $u_{n}$ then, by scaling,

$$
\left|u_{n}\right|_{W^{1 / p, p}((0,1))} \leq\left|u_{n}\right|_{W^{1 / p, p}(\mathbb{R})}=\left|u_{1}\right|_{W^{1 / p, p}(\mathbb{R})}<\infty
$$

Thus $\left|u_{n}\right|_{W^{1 / p, p}((0,1))} \lesssim 1$ and $\left|\varphi_{n}\right|_{W^{1 / p, p}((0,1))} \rightarrow \infty$. Finally, we invoke the fact that $W^{1 / p, p}$ phases are unique $\bmod 2 \pi$ [3].
If one considers instead maps $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$, always in the critical case $f \in W^{1 / p, p}, 1<p<\infty$, then a new phenomenon occurs: $f$ has a degree $\operatorname{deg} f$, and does not have a $W^{1 / p, p}$ phase at all when $\operatorname{deg} f \neq 0$ [11, Remark 10]. However, even if $\operatorname{deg} f=0$ (and thus $f$ has a $W^{1 / p, p}$ phase $\varphi$ ), we have a loss-of-control phenomenon similar to the one on $(0,1)$. Indeed, let $M_{a}(z):=\frac{a-z}{1-\bar{a} z}, a \in \mathbb{D}, z \in \overline{\mathbb{D}}$, be a Moebius transform (that we identify with its restriction to $\mathbb{S}^{1}, M_{a}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ ). Let $f_{a}(z):=\bar{z} M_{a}(z)$, so that $f_{a}$ is smooth and $\operatorname{deg} f_{a}=0$. One may prove (see below) that $\left|M_{a}\right|_{W^{1 / p, p}}=|\operatorname{Id}|_{W^{1 / p, p}}$, and thus $f_{a}$ is bounded in $W^{1 / p, p}$. However, if $a \rightarrow \alpha=\mathrm{e}^{\iota \xi} \in \mathbb{S}^{1}$, then the smooth phase $\varphi_{a}$ of $f_{a}$ converges a.e. to $\varphi\left(\mathrm{e}^{\imath \theta}\right):=$ $\left\{\begin{array}{ll}\xi-\theta, & \text { if } \xi-\pi<\theta<\xi \\ 2 \pi+\xi-\theta, & \text { if } \xi<\theta<\xi+\pi\end{array}\right.$, which does not belong to $W^{1 / p, p}$. (Here, uniqueness of the phases and convergence hold $\bmod 2 \pi$.) Thus $\varphi_{a}$ is not bounded as $a \rightarrow \alpha \in \mathbb{S}^{1}$. On the other hand, the plot of $\varphi_{a}$ shows that $\varphi_{a}$ has a "kink shape", and thus we have here the analog of the example on $(0,1)$.

There are evidences that this loss of control mechanism is the only possible one. For example, the phase of the kink is not bounded in $W^{1 / p, p}$, but clearly is in $W^{1,1}$ (same for $f_{a}$ ). Bourgain and Brézis [4] proved that for every $f \in W^{1 / 2,2}\left((0,1) ; \mathbb{S}^{1}\right)$, we may split $f=\mathrm{e}^{\imath \psi} v$, with $\psi$ and $v=\mathrm{e}^{\iota \eta}$ satisfying

$$
\begin{equation*}
|\psi|_{W^{1 / 2,2}} \lesssim|f|_{W^{1 / 2,2}} \text { and }|\eta|_{W^{1,1}}=|v|_{W^{1,1}} \lesssim|f|_{W^{1 / 2,2}}^{2} \tag{1}
\end{equation*}
$$

Intuitively, one should think at $v$ as at "the kink part of $f$ ". The above result was extended by Nguyen [18] to $1<p<\infty$ : for every $1<p<\infty$ and every $f \in W^{1 / p, p}\left((0,1) ; \mathbb{S}^{1}\right)$, we may split $f=\mathrm{e}^{l \psi} v$, with $\psi$ and $v=\mathrm{e}^{l \eta}$ satisfying

$$
\begin{equation*}
|\psi|_{W^{1 / p, p}} \leq C_{p}|f|_{W^{1 / p, p}} \text { and }|\eta|_{W^{1,1}}=|v|_{W^{1,1}} \leq C_{p}|f|_{W^{1 / p, p}}^{p} \tag{2}
\end{equation*}
$$

Here we present another result in this direction, written for simplicity on the unit circle.
Theorem 1. Let $1<p<\infty$ and $M>0$. Then there exist constants $c_{p}$ and $F(M)$ such that: every map $f \in W^{1 / p, p}\left(\mathbb{S}^{1}\right.$; $\left.\mathbb{S}^{1}\right)$ satisfying $|f|_{W^{1 / p, p}}^{p} \leq M$ can be written as $f=\mathrm{e}^{i \psi} \prod_{j=1}^{K}\left(M_{a_{j}}\right)^{\varepsilon_{j}}$, with $\varepsilon_{j} \in\{-1,1\}$,

$$
\begin{equation*}
K \leq c_{p} M \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
|\psi|_{W^{1 / p, p}}^{p} \leq F(M) \tag{4}
\end{equation*}
$$

When $p=2$, we may take $c_{2}=1 /\left(4 \pi^{2}\right)$, and this constant is optimal.
Corollary 1. Let $1<p<\infty$ and let $f_{n}, f \in W^{1 / p, p}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ be such that $f_{n} \rightharpoonup f$ in $W^{1 / p, p}$. Then, up to a subsequence, there exist $K \in \mathbb{N}, \varepsilon_{j} \in\{-1,1\}, a_{j_{n}} \in \mathbb{D}, \alpha_{j} \in \mathbb{S}^{1}, j=1, \ldots, K, \psi_{n} \in W^{1 / p, p}\left(\mathbb{S}^{1} ; \mathbb{R}\right)$, and a constant $C$, such that:
i) $f_{n}=\mathrm{e}^{i \psi_{n}} \prod_{j=1}^{K}\left(M_{a_{j_{n}}}\right)^{\varepsilon_{j}} f$;
ii) $a_{j_{n}} \rightarrow \alpha_{j}$ as $n \rightarrow \infty$;
iii) $\psi_{n} \rightharpoonup C$ in $W^{1 / p, p}$ as $n \rightarrow \infty$.

The theorem and the corollary are reminiscent of profile decompositions obtained in different, often geometrical, contexts. We mention, e.g., the work of Sacks and Uhlenbeck [19] on minimal 2-spheres, the analysis of Brézis and Coron [6-8] of constant mean curvature surfaces, or the one of Struwe [20] of equations involving the critical Sobolev exponent. There are also abstract approaches to bubbling as in the work of Lions [16] about concentration-compactness or the characterization of the lack of compactness of critical embeddings in Gérard [12], Jaffard [15] or Bahouri, Cohen and Koch [1].

Let us comment on the connection between (2) and our theorem. First, (2) has the following version for maps on $\mathbb{S}^{1}$ : we may split $f=\mathrm{e}^{\imath \psi} v$, with $|\psi|_{W^{1 / p, p}} \leq C_{p}|f|_{W^{1 / p, p}}$ and $|v|_{W^{1,1}} \leq C_{p}|f|_{W^{1 / p, p}}$. Next, a Moebius map satisfies $\left|M_{a}\right|_{W^{1,1}}=2 \pi$, and thus

$$
\begin{equation*}
\left|\prod_{j=1}^{K}\left(M_{a_{j}}\right)^{\varepsilon_{j}}\right|_{W^{1,1}} \leq 2 \pi K \leq 2 \pi c_{p} M \tag{5}
\end{equation*}
$$

Estimate (5) shows that (3) is a refinement of the second part of (2). On the other hand, (4) is weaker than the first part of (2), since $F(M)$ need not have a linear growth (and actually we do not have any control on $F$ ). This suggests the following conjecture.

Conjecture. Let $1<p<\infty$. Then there exist constants $c_{p}, d_{p}$ such that every $f \in W^{1 / p, p}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ satisfying $|f|_{W^{1 / p, p}}^{p} \leq M$ can be decomposed as $f=\mathrm{e}^{\imath \psi} \prod_{j=1}^{K}\left(M_{a_{j}}\right)^{\varepsilon_{j}}$, with $\varepsilon_{j} \in\{-1,1\}$,

$$
\begin{equation*}
K \leq c_{p} M \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
|\psi|_{W^{1 / p, p}}^{p} \leq d_{p} M \tag{7}
\end{equation*}
$$

In addition, when $p=2$, we may take $c_{2}=1 /\left(4 \pi^{2}\right)$.

## 2. Proofs

We start by recalling or establishing few auxiliary results. Given $1 \leq p<\infty, f, f_{n}$ will denote maps in $W^{1 / p, p}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$. When $1<p<\infty$, " $\rightharpoonup$ " refers to weak convergence in $W^{1 / p, p}$.

1. Recall that, up to a multiplicative factor $\alpha \in \mathbb{S}^{1}$, the Moebius transforms give all the conformal representations $u: \mathbb{D} \rightarrow \mathbb{D}$. In particular, $M_{a}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is a smooth orientation preserving diffeomorphism, and thus $\operatorname{deg} M_{a}=1$. Consequence: if $g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is continuous, then $\operatorname{deg}\left[g \circ M_{a}\right]=\operatorname{deg} g$.
2. If $1 \leq p<\infty$ and $a \in \mathbb{D}$, then $\left|f \circ M_{a}\right|_{W^{1 / p, p}}=|f|_{W^{1 / p, p}}$. (Here, we let $|f|_{W^{1,1}}:=\int_{\mathbb{S}^{1}}|\dot{f}|=\int_{0}^{2 \pi}\left|\mathrm{~d}\left[f\left(\mathrm{e}^{\imath \theta}\right)\right] / \mathrm{d} \theta\right| \mathrm{d} \theta$ and, for $1<p<\infty,|f|_{W^{1 / p, p}}^{p}:=\int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}}|f(x)-f(y)|^{p} /|x-y|^{2} \mathrm{~d} x \mathrm{~d} y$.) In order to prove the desired equality when $p=1$, we write $M_{a}\left(\mathrm{e}^{\imath \theta}\right)=\mathrm{e}^{l \varphi(\theta)}, 0 \leq \theta \leq 2 \pi$, with $\varphi$ smooth and increasing. Then

$$
\left|f \circ M_{a}\right|_{W^{1,1}}=\int_{0}^{2 \pi}\left|\frac{\mathrm{~d}}{\mathrm{~d} \theta}\left[f\left(\mathrm{e}^{l \varphi(\theta)}\right)\right]\right| \mathrm{d} \theta=\int_{\varphi^{-1}(0)}^{\varphi^{-1}(2 \pi)}\left|\frac{\mathrm{d}}{\mathrm{~d} \theta}\left[f\left(\mathrm{e}^{l \theta}\right)\right]\right| \mathrm{d} \theta=\int_{0}^{2 \pi}\left|\frac{\mathrm{~d}}{\mathrm{~d} \theta}\left[f\left(\mathrm{e}^{\imath \theta}\right)\right]\right| \mathrm{d} \theta=|f|_{W^{1,1}}
$$

When $1<p<\infty$, we rely on the following identity, valid for measurable functions $F: \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow[0, \infty]$ :

$$
\begin{equation*}
\int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} \frac{F\left(M_{a}(x), M_{a}(y)\right)}{|x-y|^{2}} \mathrm{~d} x \mathrm{~d} x=\int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} \frac{F(x, y)}{|x-y|^{2}} \mathrm{~d} x \mathrm{~d} x \tag{8}
\end{equation*}
$$

Proof of (8): We have $\left[M_{a}\right]^{-1}=M_{a}$ and thus, after change of variables, (8) amounts to

$$
\begin{equation*}
|x-y|^{2}\left|\dot{M}_{a}(x)\right|\left|\dot{M}_{a}(y)\right|=\left|M_{a}(x)-M_{a}(y)\right|^{2}, \forall x, y \in \mathbb{S}^{1} \tag{9}
\end{equation*}
$$

In turn, (9) follows immediately from the straightforward equality $\left|\dot{M}_{a}(x)\right|=\frac{1-|a|^{2}}{|1-\bar{a} x|^{2}}$.
3. If $1 \leq p<\infty$ and $a \in \mathbb{D}$, then $\operatorname{deg}\left[f \circ M_{a}\right]=\operatorname{deg} f$. Indeed, to start with, such $f$ has a degree, since $W^{1 / p, p} \hookrightarrow$ VMO and VMO maps gave a degree stable with respect to BMO convergence [11]. By item 1, the desired equality holds true
for smooth $f$. The general case follows by density of $C^{\infty}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ into $W^{1 / p, p}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ [11, Lemmas A. 11 and A.12] and by stability of the VMO degree.
4. If $1 \leq p<\infty$ and the degree of $f$ is $d$, then we may write $f(z)=\mathrm{e}^{\imath \psi(z)} z^{d}$, with $\psi \in W^{1 / p, p}\left(\mathbb{S}{ }^{1} ; \mathbb{R}\right)$. This follows easily from the fact that maps $f \in W^{1 / p, p}\left((0,1) ; \mathbb{S}^{1}\right)$ lift within $W^{1 / p, p}[3]$.
5. Let $1<p<\infty$. For $f \in W^{1 / p, p}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$, let $u=u(f)$ be its harmonic extension. Set $c_{p}^{\prime}:=\inf \left\{|f|_{W^{1 / p, p}}^{p} ; u(0)=0\right\}$. Clearly, $c_{p}^{\prime}$ is achieved, and therefore $c_{p}^{\prime}>0$.
6. When $p=2$, we have the following straightforward calculations: if $f=\sum_{n \in \mathbb{Z}} a_{n} \mathrm{e}^{i n \theta}$, then $|f|_{W^{1 / 2,2}}^{2}=4 \pi^{2} \sum_{n \in \mathbb{Z}}|n|\left|a_{n}\right|^{2}$ [10, Chapter 13], and $\operatorname{deg} f=\sum_{n \in \mathbb{Z}} n\left|a_{n}\right|^{2}$ [11, eq. (25)]. This leads to $4 \pi^{2}|\operatorname{deg} f| \leq|f|_{W^{1 / 2,2}}^{2}$, with equality e.g. when $f(z):=z^{d}$. On the other hand, if $u(f)(0)=0$, then $a_{0}=0$ and thus

$$
|f|_{W^{1 / 2,2}}^{2}=4 \pi^{2} \sum_{n \neq 0}|n|\left|a_{n}\right|^{2} \geq 4 \pi^{2} \sum_{n \neq 0}\left|a_{n}\right|^{2}=4 \pi^{2} \sum_{n \in \mathbb{Z}}\left|a_{n}\right|^{2}=2 \pi\|f\|_{L^{2}}^{2}=4 \pi^{2}
$$

Thus $c_{2}^{\prime} \geq 4 \pi^{2}$, and the example $f(z):=z$ shows that $c_{2}^{\prime}=4 \pi^{2}$.
7. For $1<p<\infty$, there exists some constant $c_{p}^{\prime \prime}$ such that $c_{p}^{\prime \prime}|\operatorname{deg} f| \leq|f|_{W^{1 / p, p}}^{p}, \forall f \in W^{1 / p, p}\left(\mathbb{S}^{1}, \mathbb{S}^{1}\right)$ [5, Corollary 0.5]. We let $c_{p}^{\prime \prime}$ be the best constant such that this estimate holds, and set $c_{p}^{*}:=\min \left\{c_{p}^{\prime}, c_{p}^{\prime \prime}\right\}$. We also set $c_{p}:=1 / c_{p}^{*}$. By item 6, for $p=2$ we have $c_{2}^{\prime \prime}=c_{2}^{\prime}=c_{2}^{*}=4 \pi^{2}$, and $c_{2}=1 /\left(4 \pi^{2}\right)$.
8. Let $1<p<\infty$. Let $\delta>0$ and assume that $|u(f)| \geq \delta$ in $\mathbb{D}$. Then there exists some $C=C(\delta, p)$ such that

$$
\begin{equation*}
f=\mathrm{e}^{\imath \psi}, \text { with } \psi \in W^{1 / p, p}\left(\mathbb{S}^{1} ; \mathbb{R}\right) \text { and }|\psi|_{W^{1 / p, p}} \leq C|f|_{W^{1 / p, p}} \tag{10}
\end{equation*}
$$

Indeed, set $v:=u /|u|$, and write $v=\mathrm{e}^{i \varphi}$, with smooth $\varphi$. By standard properties of the functional calculus and of trace theory, and by the lifting estimates in [3], we have $\varphi \in W^{2 / p, p}(\mathbb{D} ; \mathbb{R})$, and then $\psi:=\operatorname{tr} \varphi \in W^{1 / p, p}\left(\mathbb{S}^{1} ; \mathbb{R}\right)$ satisfies

$$
|\psi|_{W^{1 / p, p}} \leq C(p)|\varphi|_{W^{2 / p, p}} \leq C(p)|v|_{W^{2 / p, p}} \leq C(\delta, p)|u|_{W^{2 / p, p}} \leq C(\delta, p)|f|_{W^{1 / p, p}}
$$

9. Let $1<p<\infty$ and $c<c_{p}^{\prime}$. If $|f|_{W^{1 / p, p}}^{p} \leq c$, then there exists some $\delta>0$ such that $|u(f)| \geq \delta$ in $\mathbb{D}$. Proof by contradiction: assume that $\left|f_{n}\right|_{W^{1 / p, p}}^{p} \leq c, f_{n} \rightharpoonup g$ and $\left|u\left(f_{n}\right)\left(a_{n}\right)\right| \leq 1 / n$. Since $u\left(g \circ M_{a}\right)=[u(g)] \circ M_{a}$, we may assume (by item 2) that $a_{n}=0$. We find that $u(f)(0)=0$ and $|f|_{W^{1 / p, p}}^{p}<c_{p}^{\prime}$, which is impossible.
10. Let $1<p<\infty$. Assume that $f_{n} \rightharpoonup f$ and $f_{n} \rightarrow f$ a.e. Then $\left|f_{n}\right|_{W^{1 / p, p}}^{p}=|f|_{W^{1 / p, p}}^{p}+\left|f_{n} \bar{f}\right|_{W^{1 / p, p}}^{p}+o(1)$. Indeed, if we set $g_{n}:=f_{n} \bar{f}$, then this follows from the Brézis-Lieb lemma [9] and the identity

$$
\overline{g_{n}}(x)\left[f_{n}(x)-f_{n}(y)\right]=f(x)-f(y)+\overline{g_{n}}(x) f(y)\left[g_{n}(x)-g_{n}(y)\right] .
$$

Proof of Theorem 1. The proof is by complete induction on the integer part $L:=I\left(c_{p} M\right)=I\left(M / c_{p}^{*}\right)$ of $c_{p} M$. The case where $L=0$ follows from items 8 and 9 . Let $L>0$ and let $M$ be such that $I\left(M / c_{p}^{*}\right)=L$. Assume, by contradiction, that the theorem does not hold for $M$. We may thus find a sequence $\left(f_{n}\right)$ with the following properties:
(a) $\left|f_{n}\right|_{W^{1 / p, p}}^{p} \leq M$;
(b) for any $K \leq L$ and any choice of $a_{1}, \ldots, a_{K} \in \mathbb{D}$ and of signs $\varepsilon_{j}= \pm 1$ such that $\sum_{j=1}^{K} \varepsilon_{j}=\operatorname{deg} f_{n}$, if we write $f_{n}=$ $\mathrm{e}^{\imath \psi_{n}} \prod_{j=1}^{K}\left(M_{a_{j}}\right)^{\varepsilon_{j}}$, then we have $\left|\psi_{n}\right|_{W^{1 / p, p}} \rightarrow \infty$. (It is always possible to take $K, a_{j}, \varepsilon_{j}$ and $\psi_{n}$ as above: it suffices to let $K:=|\operatorname{deg} f| \leq I\left(M / c_{p}^{\prime \prime}\right) \leq I\left(M / c_{p}^{*}\right)=L, \varepsilon_{j}:=\operatorname{sgn} \operatorname{deg} f$, and $a_{j}=0$.)

By item 8 and property (b), there exist points $a_{n} \in \mathbb{D}$ such that $u\left(f_{n}\right)\left(a_{n}\right) \rightarrow 0$. By item 2 , we may assume in addition that $a_{n}=0$. Thus, in addition to (a) and (b), we may assume:
(c) $f_{n} \rightharpoonup f$ and $f_{n} \rightarrow f$ a.e., for some $f$ with $u(f)(0)=0$.

Set $g_{n}:=f_{n} \bar{f}$. By item 10 and the definition of $c_{p}^{\prime}$, we have $|f|_{W^{1 / p, p}}^{p} \geq c_{p}^{\prime} \geq c_{p}^{*}$, and $\left|g_{n}\right|_{W^{1 / p, p}}^{p}=M-|f|_{W^{1 / p, p}}^{p}+o(1)$. Let $N>M-|f|_{W^{1 / p, p}}^{p}$ be such that $I\left(N / c_{p}^{*}\right)=I\left(\left(M-|f|_{W^{1 / p, p}}^{p}\right) / c_{p}^{*}\right) \leq L-1$. For large $n$, we have $\left|g_{n}\right|_{W^{1 / p, p}}^{p} \leq N$. By the induction hypothesis, we may write (possibly up to a subsequence) $g_{n}=\mathrm{e}^{t \eta_{n}} \prod_{j=1}^{R}\left(M_{b_{j_{n}}}\right)^{\varepsilon_{j}}$, with $\left|\eta_{n}\right|_{W^{1 / p, p}}^{p} \leq F(N)$ and $R \leq N / c_{p}^{*}$. On the other hand, if $d:=\operatorname{deg} f, b_{j_{n}}:=0$ and $\varepsilon_{j}:=\operatorname{sgn} d$, then we may write $f=\mathrm{e}^{\imath \eta} \prod_{j=R+1}^{R+|d|}\left(M_{b_{j_{n}}}\right)^{\varepsilon_{j}}$, with $\eta \in W^{1 / p, p}$ (item 4). In addition, we have $|d| \leq|f|_{W^{1 / p, p}}^{p} / c_{p}^{\prime \prime}$ (item 7). Finally, with $\psi_{n}:=\eta_{n}+\eta$ and $K:=R+|d| \leq M / c_{p}^{*}$, we have $f_{n}=\mathrm{e}^{l \psi_{n}} \prod_{j=1}^{K}\left(M_{b_{j_{n}}}\right)^{\varepsilon_{j}}$, and $\left(\psi_{n}\right)$ is bounded in $W^{1 / p, p}$. This contradiction completes the proof of the first part of the theorem.

Optimality of (3) when $p=2$ follows from the fact that, by item $\mathbf{6}, f(z):=z^{d}, d>0$, satisfies $|f|_{W^{1 / 2,2}}^{2}=c_{2} d$ and requires at least $d$ Moebius maps in its decomposition.

Proof of Corollary 1. By replacing $f_{n}$ with $f_{n} \bar{f}$, we may assume that $f_{n} \rightharpoonup 1$. Up to a subsequence, we may write $f_{n}=\mathrm{e}^{\imath \eta_{n}} \prod_{j=1}^{P}\left(M_{a_{j n}}\right)^{\varepsilon_{j}}$, with $a_{j_{n}} \rightarrow \alpha_{j} \in \overline{\mathbb{D}}, j=1, \ldots, P$, and $\eta_{n} \rightharpoonup \eta$. With no loss of generality, we assume that $\alpha_{1}, \ldots, \alpha_{K} \in \mathbb{S}^{1}$ and $\alpha_{K+1}, \ldots, \alpha_{P} \in \mathbb{D}$. Since (clearly) $M_{a_{j_{n}}} \rightharpoonup \alpha_{j}, j=1, \ldots, K$, we find that $1=\mathrm{e}^{l(\eta-C)} \prod_{j=K+1}^{P}\left(M_{\alpha_{j}}\right)^{\varepsilon_{j}}$ for some appropriate $C$. Thus, with $\zeta_{n}:=\eta_{n}-\eta$, we have

$$
f_{n}=\mathrm{e}^{l\left(\zeta_{n}+C\right)} \prod_{j=1}^{K}\left(M_{a_{j_{n}}}\right)^{\varepsilon_{j}} \prod_{j=K+1}^{P}\left(M_{a_{j_{n}}} M_{\alpha_{j}}^{-1}\right)^{\varepsilon_{j}}=\mathrm{e}^{\imath \psi_{n}} \prod_{j=1}^{K}\left(M_{a_{j_{n}}}\right)^{\varepsilon_{j}}
$$

for some $\psi_{n}$ such that $\psi_{n}-\zeta_{n} \rightarrow C$ in $W^{1 / p, p}$, and thus $\psi_{n} \rightharpoonup C$.
Remark. The corollary implies the "bubbling-off of circles along a sequence of graphs". More specifically, the behavior of weakly converging sequences of manifold-valued maps can be investigated within the theory of Cartesian currents of Giaquinta, Modica and Souček [13]; see also [14,17] for the specific case of $W^{1 / 2,2}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$. When $p=2$, it is possible to define (as a current) the graph $\mathcal{G}_{f}$ of $f \in W^{1 / 2,2}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$. With the notation in the corollary, if $p=2$ and $f_{n} \rightharpoonup f$, "bubbling-off" reads

$$
\begin{equation*}
\mathcal{G}_{f_{n}} \rightharpoonup \mathcal{G}_{f}+\sum_{j=1}^{K} \varepsilon_{j} \delta_{\alpha_{j}} \times\left[\mathbb{S}^{1}\right] \text { in } \mathcal{D}_{1}\left(\mathbb{S}^{1} \times \mathbb{S}^{1}\right) \tag{11}
\end{equation*}
$$

This can be obtained directly from (1) [17, Proposition 3.1], but also as an immediate consequence of the corollary. Details are left to the reader.

## 3. Applications

We start with an immediate consequence of Theorem 1.
Corollary 2. Let $d$ be a non-negative integer and $\delta>0$. Then there exists a constant $F(d, \delta)$ such that: every map $f \in W^{1 / 2,2}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right)$ satisfying $\operatorname{deg} f=d$ and $|f|_{W^{1 / 2,2}}^{2} \leq 4 \pi^{2}(d+1)-\delta$ can be written as $f=\mathrm{e}^{i \psi} \prod_{j=1}^{d} M_{a_{j}}$, with $|\psi|_{W^{1 / 2,2}}^{2} \leq F(d, \delta)$.

Corollary 2 with $d=1$, as well as a weak version of the corollary when $d \geq 2$ were obtained in [2, Theorem 4.4, Theorem 4.8]. As an application of Corollary 2, we obtain the following theorem.

Theorem 2. There exists some $\varepsilon>0$ such that, for $p \in(2-\varepsilon, 2]$,

$$
m_{p}:=\min \left\{|f|_{W^{1 / p, p}}^{p} ; \operatorname{deg} f=1\right\}
$$

is achieved.

Proof. When $p=2$, it follows from item 6 that $m_{2}$ is achieved by multiples of Moebius maps.
When $1<p<2$, consider a minimizing sequence for $m_{p}$. Since $m_{p} \leq|\mathrm{Id}|_{W^{1 / p, p}}^{p}:=I_{p}$, we may assume that

$$
\begin{equation*}
\left|f_{n}\right|_{W^{1 / p, p}}^{p} \leq I_{p} \rightarrow I_{2}=4 \pi^{2} \text { as } p \rightarrow 2 \tag{12}
\end{equation*}
$$

On the other hand, when $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ we have $|f|_{H^{1 / 2}}^{2} \leq 2^{2-p}|f|_{W^{1 / p, p}}^{p}$. Thus

$$
\begin{equation*}
\left|f_{n}\right|_{H^{1 / 2}}^{2} \leq J_{p}:=2^{2-p} I_{p} \rightarrow 4 \pi^{2} \text { as } p \rightarrow 2 \tag{13}
\end{equation*}
$$

For $p$ sufficiently close to 2 and fixed $\delta>0$, we have $J_{p} \leq 8 \pi^{2}-\delta$. We next apply Corollary 2 to $f_{n}$ and write $f_{n}=$ $\mathrm{e}^{\imath \psi_{n}} M_{a_{n}}$, with $\left|\psi_{n}\right|_{W^{1 / 2,2}} \leq F(1, \delta)$. Set $g_{n}:=f_{n} \circ M_{a_{n}}$. By item $2,\left(g_{n}\right)$ is a minimizing sequence for $m_{p}$. On the other hand, we have $g_{n}=\mathrm{e}^{\iota \varphi_{n}} \mathrm{Id}$, with $\varphi_{n}:=\psi_{n} \circ M_{a_{n}}$ bounded in $W^{1 / 2,2}\left(\mathbb{S}^{1} ; \mathbb{R}\right)$ (by (8)). Therefore, up to a subsequence $\varphi_{n} \rightharpoonup \varphi$ in $W^{1 / 2,2}$, and thus $g_{n} \rightharpoonup g:=\mathrm{e}^{t \varphi}$ Id in $W^{1 / 2,2}$. We find that $\operatorname{deg} g=1$. Since $\left(g_{n}\right)$ is bounded in $W^{1 / p, p}$, we obtain that $g_{n} \rightharpoonup g$ in $W^{1 / p, p}$. By a standard argument, $g$ achieves $m_{p}$.

## Acknowledgements

The author was supported by the ANR project "Harmonic Analysis at its Boundaries", ANR-12-BS01-0013-03, and by the LABEX MILYON (ANR-10-LABX-0070) of the "Université de Lyon", within the program "Investissements d'avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

## References

[1] H. Bahouri, A. Cohen, G. Koch, A general wavelet-based profile decomposition in the critical embedding of function spaces, Confluentes Math. 3 (3) (2011) 387-411.
[2] L.V. Berlyand, P. Mironescu, V. Rybalko, E. Sandier, Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions: existence and bubbling, Commun. Partial Differ. Equ. 39 (5) (2014) 946-1005.
[3] J. Bourgain, H. Brézis, P. Mironescu, Lifting in Sobolev spaces, J. Anal. Math. 80 (2000) 37-86.
[4] J. Bourgain, H. Brézis, On the equation $\operatorname{div} Y=f$ and application to control of phases, J. Amer. Math. Soc. 16 (2) (2003) 393-426 (electronic).
[5] J. Bourgain, H. Brézis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math. 58 (4) (2005) $529-551$.
[6] H. Brézis, Problèmes de convergence dans certaines EDP non linéaires et applications géométriques, in: Goulaouic-Meyer-Schwartz Seminar, 1983-1984, Exp. No. 14, École polytechnique, Palaiseau, France, 1984, 11 p.
[7] H. Brézis, J.-M. Coron, Convergence de solutions de $H$-systèmes et application aux surfaces à courbure moyenne constante, C. R. Acad. Sci. Paris, Ser. I 298 (16) (1984) 389-392.
[8] H. Brézis, J.-M. Coron, Convergence of solutions of $H$-systems or how to blow bubbles, Arch. Ration. Mech. Anal. 89 (1) (1985) 21-56.
[9] H. Brézis, E.H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (3) (1983) 486-490.
[10] H. Brézis, P. Mironescu, Sobolev maps with values into the circle, Birkhäuser, in preparation.
[11] H. Brézis, L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries, Sel. Math. New Ser. 1 (2) (1995) 197-263.
[12] P. Gérard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var. 3 (1998) 213-233 (electronic).
[13] M. Giaquinta, G. Modica, J. Souček, Cartesian currents in the calculus of variations. I. Cartesian currents, in: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics), vol. 37, Springer-Verlag, Berlin, 1998.
[14] M. Giaquinta, G. Modica, J. Souček, On sequences of maps into $S^{1}$ with equibounded $W^{1 / 2}$ energies, Sel. Math. New Ser. 10 (3) (2004) $359-375$.
[15] S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal. 161 (2) (1999) 384-396.
[16] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoam. 1 (2) (1985) 45-121.
[17] P. Mironescu, A. Pisante, A variational problem with lack of compactness for $H^{1 / 2}\left(S^{1} ; S^{1}\right)$ maps of prescribed degree, J. Funct. Anal. 217 (2) (2004) 249-279.
[18] H.-M. Nguyen, Inequalities related to liftings and applications, C. R. Acad. Sci. Paris, Ser. I 346 (2008) 957-962.
[19] J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. Math. (2) 113 (1) (1981) 1-24.
[20] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (4) (1984) $511-517$.


[^0]:    E-mail address: mironescu@math.univ-lyon1.fr.
    http://dx.doi.org/10.1016/j.crma.2015.09.030
    1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

