A local regularity condition involving two velocity components of Serrin-type for the Navier-Stokes equations

Une condition de la régularité locale impliquant deux composantes de la vitesse de type Serrin pour les équations de Navier-Stokes

Hyeong-Ohk Bae ${ }^{\text {a }}$, Jörg Wolf ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Financial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-749, Republic of Korea
${ }^{\text {b }}$ Department of Mathematics, Humboldt University Berlin, Unter den Linden 6, 10099 Berlin, Germany

A R T I C L E IN F O

Article history:

Received 15 May 2015
Accepted 4 November 2015
Available online 22 January 2016
Presented by Haïm Brézis

Abstract

The present paper deals with the problem of local regularity of weak solutions to the Navier-Stokes equation in $\Omega \times(0, T)$ with forcing term \boldsymbol{f} in L^{2}. We prove that \boldsymbol{u} is strong in a sub-cylinder $Q_{r} \subset \Omega \times(0, T)$ if two velocity components u^{1}, u^{2} satisfy a Serrin-type condition.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Le présent papier traite le problème de la régularité locale de solutions faibles à l'équation de Navier-Stokes en $\Omega \times(0, T)$ de terme de force \boldsymbol{f} en L^{2}. Nous prouvons que \boldsymbol{u} est forte dans un sous-cylindre $Q_{r} \subset \Omega \times(0, T)$ si deux composantes de la vitesse u^{1}, u^{2} satisfont une condition de type Serrin.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $\Omega \subset \mathbb{R}^{3}$ be an open set and $0<T<+\infty$. We consider the Navier-Stokes equations in the cylindrical domain $\Omega_{T}:=$ $\Omega \times(0, T)$

$$
\begin{align*}
& \nabla \cdot \boldsymbol{u}=0, \tag{1.1}\\
& \partial_{t} u^{i}+(\boldsymbol{u} \cdot \nabla) u^{i}-\Delta u^{i}+\partial_{i} p=f^{i}, \quad i=1,2,3, \tag{1.2}
\end{align*}
$$

where $\boldsymbol{u}=\left(u^{1}, u^{2}, u^{3}\right)$ and p are unknown velocity and pressure, respectively, and $\boldsymbol{f}=\left(f^{1}, f^{2}, f^{3}\right)$ is a known exterior force.

[^0]The aim of the present paper is to show that if two components of \boldsymbol{u}, say u^{1} and u^{2}, satisfy a Serrin condition in a sub cylinder $Q_{r} \subset \Omega_{T}$, i.e.

$$
\begin{equation*}
u^{i} \in L^{s}\left(t_{0}-r^{2}, t_{0} ; L^{q}\left(B_{r}\right)\right), \quad \frac{2}{s}+\frac{3}{q}=1, \quad i=1,2, \quad(3<q \leq+\infty) \tag{1.3}
\end{equation*}
$$

then \boldsymbol{u} is regular in $Q_{r}:=\left(t_{0}-r^{2}, t_{0}\right) \times B_{r}$, where $B_{r} \subset \Omega$ is a ball of radius r.
The Serrin-type regularity criterion for the Navier-Stokes equations is studied a lot, especially in [6,12,13]. In the sense of componentwize Serrin criteria, the two-component regularity is studied for the vorticity in [4], and for the velocity in [1], which is published in [2]. There are many results on this problem for the two-component conditions, for example [3]. The one-component regularity condition is studied in $[9,10,16]$.

The local version of the Serrin-type condition is studied in [5] for the vorticity, and in [11] for the axially symmetric case.

In this article, we study a local Serrin-type regularity criterion with two components, which completes the result in [1,2]. We remark that it is shown in [1,2] that if u^{1}, u^{2} satisfy (1.3) with $q=6, s=\infty$, then the weak solution is regular.

We begin our discussion by providing the notations used throughout the paper. For points $x, y \in \mathbb{R}^{3}$, by $x \cdot y$ we denote the usual scalar product. Vector functions as well as tensor-valued functions are denoted by bold-face letters. For two matrices $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{3 \times 3}$, we denote by $\boldsymbol{A}: \boldsymbol{B}$ the scalar product $\boldsymbol{A}: \boldsymbol{B}:=\sum_{i, j=1}^{3} A_{i j} B_{i j}$.

The notations $W^{k, q}(\Omega), W_{0}^{k, q}(\Omega)(1 \leq q \leq+\infty ; k \in \mathbb{N})$ stand for the usual Sobolev spaces. As it will be always clear, throughout this Note we will not distinguish between spaces of scalar valued functions and spaces of vector- or tensorvalued functions. For a given Banach space X, we denote by $L^{s}(a, b ; X)$ the space of all Bochner measurable functions $f:(a, b) \rightarrow X$ such that $\|f(\cdot)\|_{X} \in L^{s}(a, b)$. Its norm is given by

$$
\|f\|_{L^{s}(a, b ; X)}:=\left\{\begin{array}{lll}
\left(\int_{a}^{b}\|f(t)\|_{X}^{s} \mathrm{~d} t\right)^{1 / s} & \text { if } & 1 \leq s<+\infty \\
\operatorname{ess} \sup _{t \in(a, b)}\|f(t)\|_{X} & \text { if } & s=+\infty
\end{array}\right.
$$

The space of smooth solenoidal vector fields with compact support in Ω will be denoted by $C_{c, \text { div }}^{\infty}(\Omega)$. Then, we define:

$$
\begin{aligned}
L_{\mathrm{div}}^{q}(\Omega) & :=\text { closure of } C_{\mathrm{c}, \text { div }}^{\infty}(\Omega) \text { with respect to the } L^{q} \text { norm, } \\
W_{0, \operatorname{div}}^{1, q}(\Omega) & :=\text { closure of } C_{\mathrm{c}, \text { div }}^{\infty}(\Omega) \text { with respect to the } W_{0}^{1, q} \text { norm, } \\
V^{2}\left(\Omega_{T}\right) & :=L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; W^{1,2}(\Omega)\right), \\
V_{\mathrm{div}}^{2}\left(\Omega_{T}\right) & :=\left\{\boldsymbol{u} \in V^{2}\left(\Omega_{T}\right): \nabla \cdot \boldsymbol{u}=0 \text { a.e. in } \Omega_{T}\right\} .
\end{aligned}
$$

Next, we are going to introduce the notion of a local weak solution to (1.1), (1.2) with finite energy.
Definition 1.1. Let $\boldsymbol{f} \in L^{2}\left(\Omega_{T}\right)$. A vector function \boldsymbol{u} is called a weak solution to (1.1), (1.2) with finite energy if $\boldsymbol{u} \in V_{\text {div }}^{2}\left(\Omega_{T}\right)$ and the following integral identity holds for all $\varphi \in C_{c}^{\infty}\left(\Omega_{T}\right)$ with $\nabla \cdot \varphi=0$

$$
\int_{\Omega_{T}}-\boldsymbol{u} \cdot \partial_{t} \boldsymbol{\varphi}-\boldsymbol{u} \otimes \boldsymbol{u}: \nabla \boldsymbol{\varphi}+\nabla \boldsymbol{u}: \nabla \varphi \mathrm{d} x \mathrm{~d} t=\int_{\Omega_{T}} \boldsymbol{f} \cdot \boldsymbol{\varphi} \mathrm{~d} x \mathrm{~d} t
$$

Remark 1.2. By means of Sobolev's embedding theorem, we get the embedding

$$
V_{\mathrm{div}}^{2}\left(\Omega_{T}\right) \hookrightarrow L^{\alpha}\left(0, T ; L^{\beta}(\Omega)\right), \quad \frac{2}{\alpha}+\frac{3}{\beta}=\frac{3}{2}, \quad \alpha, \beta \in[2,+\infty]
$$

Our main result is the following.
Theorem 1.3. Let $\boldsymbol{f} \in L^{2}\left(\Omega_{T}\right)$. Let $\boldsymbol{u} \in V^{2}\left(\Omega_{T}\right)$) be a local weak solution with finite energy to (1.1), (1.2). Suppose that u^{1}, u^{2} satisfy (1.3) in a sub-cylinder $Q_{r}=Q_{r}\left(x_{0}, t_{0}\right) \subset \Omega_{T}$. Then \boldsymbol{u} is a strong solution in Q_{r}, i.e.

$$
\nabla^{2} \boldsymbol{u} \in L^{2}\left(Q_{\rho}\right), \nabla \boldsymbol{u} \in L^{\infty}\left(t_{0}-\rho^{2}, t_{0} ; L^{2}\left(B_{\rho}\right)\right) \quad \forall 0<\rho<r .
$$

We remark that initial and boundary conditions are not important since we consider the local regularity.
We will prove the theorem in the next sections. For that, we consider a decomposition of the pressure in Section 2, and prove the regularity in the whole space under Serrin conditions in Section 3. Finally, in Section 4, we prove our theorem.

2. Local pressure and local suitable weak solutions

We briefly recall the definition of the local pressure (for details, cf. [15]). Let $U \subset \mathbb{R}^{3}$ be a bounded C^{1} domain. By $W^{-1, q}(U)$ we denote the dual of $W_{0}^{1, q^{\prime}}(U)$. Here, q^{\prime} stands for the dual exponent of q, that is, $\frac{q}{q-1}$ if $1<q<+\infty, 1$ if $q=+\infty$, and $+\infty$ if $q=1$. Furthermore, we define the following subspaces of $W^{-1, q}(U)$

$$
\begin{aligned}
G^{-1, q}(U) & :=\left\{\nabla p \in W^{-1, q}(U) \mid p \in L_{0}^{q}(U)\right\} \\
W_{\operatorname{div}}^{-1, q}(U) & :=\left\{-\Delta \boldsymbol{v} \in W^{-1, q}(U) \mid \boldsymbol{v} \in W_{0, \operatorname{div}}^{1, q}(U)\right\} .
\end{aligned}
$$

Here, $L_{0}^{q}(U)$ denotes the space of all $p \in L^{q}(U)$ such that $\int_{U} f \mathrm{~d} x=0$.
Based on the result [8, Theorem 2.1] we see that

$$
W^{-1, q}(U)=G^{-1, q}(U) \oplus W_{\mathrm{div}}^{-1, q}(U)
$$

and there exists a unique projection $\boldsymbol{E}_{U}: W^{-1, q}(U) \rightarrow G^{-1, q}(U)$, such that

$$
\boldsymbol{v}^{*}-\boldsymbol{E}_{U} \boldsymbol{v}^{*} \in W_{\mathrm{div}}^{-1, q}(U)
$$

i.e. there exists a unique pair $(\boldsymbol{v}, p) \in W_{0, \text { div }}^{1, q}(U) \times L_{0}^{q}(U)$, such that $\nabla p=\boldsymbol{E}_{U} \boldsymbol{v}^{*}$, which is a weak solution to the Stokes system

$$
\left\{\begin{array}{c}
\nabla \cdot \boldsymbol{v}=0 \quad \text { a.e. in } U, \\
-\Delta \boldsymbol{v}+\nabla p=\boldsymbol{v}^{*} \text { in } W^{-1, q}(U), \\
\boldsymbol{v}=\mathbf{0} \text { a.e. in } \partial U .
\end{array}\right.
$$

In particular, we have the estimate

$$
\|p\|_{L^{q}} \leq c\left\|\boldsymbol{v}^{*}\right\|_{W^{-1, q}}
$$

with a constant $c>0$ depending only on q and U. In case U coincides with a ball B_{r}, the constant c depends only on q.
Furthermore, by virtue of [7, Theorem IV.5.1], we have the following regularity result.
Lemma 2.1. Let $U \subset \mathbb{R}^{3}$ be a bounded C^{k+1} domain. Then the restriction of \boldsymbol{E}_{U} to $W^{k-1, q}(U)$ defines a projection in $W^{k-1, q}(U)$. In addition, there holds

$$
\|\nabla p\|_{W^{k-1, q}} \leq c\|\boldsymbol{f}\|_{W^{k-1, q}}
$$

where we have identified $W^{0, q}(U)$ with $L^{q}(U)$ and have used the canonical embedding $L^{q}(U) \hookrightarrow W^{-1, q}(U)$ given as

$$
\langle\boldsymbol{f}, \boldsymbol{v}\rangle=\int_{U} \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{~d} x, \quad \boldsymbol{f} \in L^{q}(U), \quad \boldsymbol{v} \in W_{0}^{1, q}(U) .
$$

Here, $c=$ const >0 and depends on q and on the geometric property of U only. In particular, if U equals a ball B_{r}, this constant is independent of $r>0$.

By using the local projection \boldsymbol{E}_{U}, we have the following lemma.
Lemma 2.2. Let $\boldsymbol{u} \in V_{\text {div }}^{2}\left(\Omega_{T}\right)$. Then for every bounded C^{2} domain $U \subset \Omega$ the following identity holds true that for every $\boldsymbol{\varphi} \in C_{c}^{\infty}(U \times$ $(0, T)$),

$$
\begin{aligned}
\int_{\Omega_{T}} & -\left(\boldsymbol{u}+\nabla \pi_{\mathrm{hm}, U}\right) \cdot \partial_{t} \boldsymbol{\varphi}-\boldsymbol{u} \otimes \boldsymbol{u}: \nabla \boldsymbol{\varphi}+\nabla \boldsymbol{u}: \nabla \boldsymbol{\varphi} \mathrm{d} x \mathrm{~d} t \\
& =\int_{\Omega_{T}} \boldsymbol{f} \cdot \boldsymbol{\varphi} \mathrm{~d} x \mathrm{~d} t+\int_{\Omega_{T}}\left(\pi_{1, U}+\pi_{2, U}+\pi_{3, U}\right) \nabla \cdot \boldsymbol{\varphi} \mathrm{d} x \mathrm{~d} t,
\end{aligned}
$$

where

$$
\begin{aligned}
\nabla \pi_{\mathrm{hm}, U} & =-\boldsymbol{E}_{U}(\boldsymbol{u}), & & \nabla \pi_{1, U}=-\boldsymbol{E}_{U}((\boldsymbol{u} \cdot \nabla) \boldsymbol{u}), \\
\nabla \pi_{2, U} & =\boldsymbol{E}_{U}(\Delta \boldsymbol{u}), & & \nabla \pi_{3, U}=\boldsymbol{E}_{U}(\boldsymbol{f}) .
\end{aligned}
$$

For a detailed proof of Lemma 2.2, see [14, Lemma 2.4].

We proceed by providing the definition of a local suitable weak solution.
Definition 2.3. Let $\boldsymbol{u} \in V_{\text {div }}^{2}\left(\Omega_{T}\right)$ be a local weak solution to (1.1), (1.2). Let $U \subset \Omega$ be a bounded C^{2} domain and $0 \leq t_{1}<$ $t_{2} \leq T$. Then \boldsymbol{u} is called a local suitable weak solution to (1.1), (1.2) in $U \times\left(t_{1}, t_{2}\right)$ if

$$
\begin{align*}
& \frac{1}{2} \int_{U} \phi|\boldsymbol{v}(t)|^{2} \mathrm{~d} x+\int_{t_{1}}^{t} \int_{U} \phi|\nabla \boldsymbol{v}|^{2} \mathrm{~d} x \mathrm{~d} s \\
& \quad=\frac{1}{2} \int_{t_{1}}^{t} \int_{U}|\boldsymbol{v}|^{2}\left(\partial_{t} \phi+\Delta \phi\right) \mathrm{d} x \mathrm{~d} s\left(\frac{1}{2}|\boldsymbol{v}|^{2}+\pi_{1, U}+\pi_{2, U}+\pi_{3, U}\right) \boldsymbol{v} \cdot \nabla \phi \mathrm{d} x \mathrm{~d} s+\int_{t_{1}}^{t} \int_{U} \phi \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{~d} x \mathrm{~d} t \tag{2.1}
\end{align*}
$$

for all nonnegative $\phi \in C_{c}^{\infty}\left(U \times\left(t_{1}, t_{2}\right)\right)$ for a.e. $t \in\left(t_{1}, t_{2}\right)$, where

$$
\boldsymbol{v}=\boldsymbol{u}+\nabla \pi_{\mathrm{hm}, U}
$$

Remark 2.4. Let \boldsymbol{u} be a local suitable weak solution to (1.1), (1.2) in $U \times\left(t_{1}, t_{2}\right)$. Using the method in [14], it can be checked easily that each point $z_{0} \in U \times\left(t_{1}, t_{2}\right)$, with

$$
\limsup _{r \rightarrow 0} \frac{1}{r} \int_{Q_{r}\left(z_{0}\right)}|\nabla \boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t=0
$$

is a regular point, i.e. that there exists $\sigma>0$ such that

$$
\nabla \boldsymbol{u} \in V^{2}\left(Q_{\sigma}\left(z_{0}\right)\right)
$$

Now, we are in a position to prove the following local energy equality.
Lemma 2.5. Let $\boldsymbol{u} \in V_{\text {div }}^{2}\left(\Omega_{T}\right)$ be a local weak solution to (1.1), (1.2). Assume that u^{1}, u^{2} satisfy (1.3) in a subcylinder $Q_{r}\left(x_{0}, t_{0}\right)$. Then \boldsymbol{u} is a local suitable weak solution to (1.1), (1.2) in Q_{r}. In fact, (2.1) holds with equal sign.

Proof. In view of (1.1), we may write

$$
\begin{aligned}
(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}=\nabla \cdot(\boldsymbol{u} \otimes \boldsymbol{u}) & =\sum_{j=1}^{3} \sum_{i=1}^{2} \partial_{j}\left(u^{j} u^{i}\right)+\sum_{j=1}^{2} \partial_{j}\left(u^{i} u^{3}\right)+2 u^{3} \partial_{3} u^{3} \\
& =\sum_{j=1}^{3} \sum_{i=1}^{2} \partial_{j}\left(u^{j} u^{i}\right)+\sum_{j=1}^{2} \partial_{j}\left(u^{j} u^{3}\right)-2 \sum_{j=1}^{2} u^{3} \partial_{j} u^{j} \\
& =\sum_{j=1}^{3} \sum_{i=1}^{2} \partial_{j}\left(u^{j} u^{i}\right)-\sum_{j=1}^{2} \partial_{j}\left(u^{j} u^{3}\right)+2 \sum_{j=1}^{2} \partial_{j} u^{3} u^{j}=\nabla \cdot \boldsymbol{A}+\boldsymbol{b}
\end{aligned}
$$

Owing to (1.3) and the embedding $V^{2}\left(\Omega_{T}\right) \hookrightarrow L^{\alpha}\left(0, T ; L^{\beta}\right)$ with $\frac{2}{\alpha}+\frac{3}{\beta}=\frac{3}{2}$ for all $\alpha, \beta \in[2,+\infty]$, we find

$$
\boldsymbol{A} \in L^{2}\left(Q_{r}\right), \quad \boldsymbol{b} \in L^{\gamma}\left(t_{0}-r^{2}, t_{0} ; L^{\delta}\left(B_{r}\right)\right), \quad \frac{2}{\gamma}+\frac{3}{\delta}=\frac{7}{2}, \quad \gamma, \delta \in(1,2)
$$

We define the local pressures $\pi_{\mathrm{hm}}, \pi_{1,1}, \pi_{1,2}, \pi_{2}$ and π_{3} in the following ways:

$$
\begin{aligned}
& \nabla \pi_{\mathrm{hm}}=-\boldsymbol{E}_{B_{r}}(\boldsymbol{u}), \quad \nabla \pi_{1,1}=\boldsymbol{E}_{B_{r}}(\nabla \cdot \boldsymbol{A}), \\
& \nabla \pi_{1,2}=\boldsymbol{E}_{B_{r}}(\boldsymbol{b}), \quad \nabla \pi_{2}=\boldsymbol{E}_{B_{r}}(\Delta \boldsymbol{u}), \quad \nabla \pi_{3}=\boldsymbol{E}_{B_{r}}(\boldsymbol{f}),
\end{aligned}
$$

where $\boldsymbol{E}_{B_{r}}: W^{-1, q}\left(B_{r}\right) \rightarrow W^{-1, q}\left(B_{r}\right),(1<q<+\infty)$, defined above. Setting $\boldsymbol{v}:=\boldsymbol{u}+\nabla \pi_{\mathrm{hm}}$ we see that

$$
\partial_{t} \boldsymbol{v}-\Delta \boldsymbol{v}=\nabla \cdot \boldsymbol{A}+\boldsymbol{b}-\nabla\left(\pi_{1,1}+\pi_{1,2}+\pi_{2}+\pi_{3}\right)+\boldsymbol{f} \quad \text { in } \quad Q_{r}
$$

in sense of distributions. Clearly, $\boldsymbol{v} \in V^{2}\left(Q_{r}\right)$. Furthermore,

$$
\begin{aligned}
& \pi_{1,1}+\pi_{2}+\pi_{3} \in L^{2}\left(Q_{r}\right), \\
& \nabla \pi_{1,2} \in L^{\gamma}\left(t_{0}-r^{2}, t_{0} L^{\delta}\left(B_{r}\right)\right), \quad \frac{2}{\gamma}+\frac{3}{\delta}=\frac{7}{2}, \quad(\gamma, \delta \in[1,2]) .
\end{aligned}
$$

Accordingly, the following local energy equality holds:

$$
\begin{aligned}
& \frac{1}{2} \int_{B_{r}}|\boldsymbol{v}(t)|^{2} \phi \mathrm{~d} x+\int_{t_{0}-r^{2}}^{t} \int_{B_{r}}|\nabla \boldsymbol{v}|^{2} \phi \mathrm{~d} x \mathrm{~d} s \\
& \quad=\frac{1}{2} \int_{t_{0}-r^{2}}^{t} \int_{B_{r}}|\boldsymbol{v}|^{2}\left(\partial_{t} \phi+\Delta \phi\right) \mathrm{d} x \mathrm{~d} s-\int_{t_{0}-r^{2}}^{t} \int_{B_{r}} \boldsymbol{A}: \nabla(\boldsymbol{v} \phi)+\left(\pi_{1,1}+\pi_{2}+\pi_{3}\right) \nabla \cdot(\boldsymbol{v} \phi) \mathrm{d} x \mathrm{~d} s \\
& \quad+\int_{t_{0}-r^{2}}^{t} \int_{B_{r}} \boldsymbol{b} \cdot \boldsymbol{v} \phi-\nabla \pi_{1,2} \boldsymbol{v} \phi \mathrm{~d} x \mathrm{~d} s+\int_{t_{0}-r^{2}}^{t} \int_{B_{r}} \phi \boldsymbol{f} \cdot \boldsymbol{v} \mathrm{~d} x \mathrm{~d} s
\end{aligned}
$$

for all non-negative $\phi \in C_{c}^{\infty}\left(Q_{r}\right)$. This shows that \boldsymbol{u} is a local suitable weak solution to (1.1), (1.2) in Q_{r}.

3. Global regularity

In the present section, we provide a Serrin-type condition on two velocity components in the whole space. Note that a similar result has been proved in [2]. We have the following theorem.

Theorem 3.1. Let $\boldsymbol{f} \in L^{2}$ and let $\boldsymbol{u}_{0} \in W_{\text {div }}^{1,2}$. Let $\boldsymbol{u} \in V^{2}\left(\Omega_{T}\right)$ be a weak solution to (1.1)-(1.2) in $\mathbb{R}^{3} \times(0, T)$. Suppose

$$
\begin{equation*}
u^{i} \in L^{s}\left(0, T ; L^{q}\right), \quad \frac{2}{s}+\frac{3}{q}=1, \quad i=1,2 \quad(3<q \leq+\infty) . \tag{3.1}
\end{equation*}
$$

Then \boldsymbol{u} is a strong solution in $\mathbb{R}^{3} \times[\tau, T]$ for every $0<\tau<T$.
Proof. Let $0<\tau<T$ such that $\boldsymbol{u}(\tau) \in W^{1,2}$. Assume that \boldsymbol{u} is not strong on $\mathbb{R}^{3} \times[\tau, T]$. Let $\tau<T_{*} \leq T$ denote the first time of blow up of \boldsymbol{u}, the existence of which is guaranteed by the local-in-time existence of a strong solution. Let $\tau<T_{0}<T_{*}$ be suitably fixed. Since \boldsymbol{u} is strong in [τ, T_{0}], we may multiply both sides of (1.2) by $-\Delta \boldsymbol{u}$ and integrate the result over $\mathbb{R}^{3} \times\left(T_{0}, t_{0}\right)\left(T_{0}<t_{0}<T_{*}\right)$. By integration by parts, this leads to

$$
\begin{equation*}
\frac{1}{2}\left\|\nabla \boldsymbol{u}\left(t_{0}\right)\right\|_{L^{2}}^{2}+\int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}}|\Delta \boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t=\int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}} u^{j} \partial_{j} u^{i} \partial_{k} \partial_{k} u^{i} \mathrm{~d} x \mathrm{~d} t-\int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}} \boldsymbol{f} \cdot \Delta \boldsymbol{u} \mathrm{~d} x \mathrm{~d} t+\frac{1}{2}\left\|\nabla \boldsymbol{u}\left(T_{0}\right)\right\|_{L^{2}}^{2} \tag{3.2}
\end{equation*}
$$

Elementary,

$$
\begin{aligned}
& \int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}} u^{j} \partial_{j} u^{i} \partial_{k} \partial_{k} u^{i} \mathrm{~d} x \mathrm{~d} t \\
& \quad=\sum_{i=1}^{2} \int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}} u^{j} \partial_{j} u^{i} \partial_{k} \partial_{k} u^{i} \mathrm{~d} x \mathrm{~d} t+\sum_{j=1}^{2} \int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}} u^{j} \partial_{j} u^{3} \partial_{k} \partial_{k} u^{3} \mathrm{~d} x \mathrm{~d} t+\int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}} u^{3} \partial_{3} u^{3} \partial_{k} \partial_{k} u^{3} \mathrm{~d} x \mathrm{~d} t \\
& \quad=-\sum_{i=1}^{2} \int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}} \partial_{k} u^{j} \partial_{j} u^{i} \partial_{k} u^{i} \mathrm{~d} x \mathrm{~d} t+\sum_{j=1}^{2} \int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}} u^{j} \partial_{j} u^{3} \partial_{k} \partial_{k} u^{3} \mathrm{~d} x \mathrm{~d} t \\
& \quad-\int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}} \partial_{k} u^{3} \partial_{3} u^{3} \partial_{k} u^{3} \mathrm{~d} x \mathrm{~d} t+\frac{1}{2} \int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}} \partial_{3} u^{3}\left|\nabla u^{3}\right|^{2} \mathrm{~d} x \mathrm{~d} t \\
& =: I_{1}+I_{2}+I_{3}+I_{4} .
\end{aligned}
$$

Applying integration by parts, we calculate

$$
I_{1}=\sum_{i=1}^{2} \int_{T_{0}}^{t_{0}} \int_{\mathbb{R}^{3}} \partial_{k} u^{j} u^{i} \partial_{j} \partial_{k} u^{i} \mathrm{~d} x \mathrm{~d} t
$$

By means of Hölder's inequality, we get

$$
\begin{equation*}
I_{1} \leq c\left(\left\|u^{1}\right\|_{L^{s}\left(T_{0}, T ; L^{q}\right)}+\left\|u^{2}\right\|_{L^{s}\left(T_{0}, T ; L^{q}\right)}\right)\|\nabla \boldsymbol{u}\|_{L^{\gamma}\left(T_{0}, T ; L^{\delta}\right)}\|\Delta \boldsymbol{u}\|_{L^{2}} \tag{3.3}
\end{equation*}
$$

where

$$
\frac{1}{s}+\frac{1}{\gamma}+\frac{1}{2}=1, \quad \frac{1}{q}+\frac{1}{\delta}+\frac{1}{2}=1
$$

Clearly in view of (3.1) we get

$$
\frac{2}{\gamma}+\frac{3}{\delta}=\frac{3}{2}
$$

By means of Sobolev's embedding theorem, from (3.3) we infer

$$
I_{1} \leq c_{0}\left(\left\|u^{1}\right\|_{L^{s}\left(T_{0}, T ; L^{q}\right)}+\left\|u^{2}\right\|_{L^{s}\left(T_{0}, T ; L^{q}\right)}\right)\left(\|\nabla \boldsymbol{u}\|_{L^{\infty}\left(T_{0}, t_{0} ; L^{2}\right)}^{2}+\|\Delta \boldsymbol{u}\|_{L^{2}\left(T_{0}, t_{0} ; L^{2}\right)}^{2}\right)
$$

with an absolute constant $c_{0}>0$.
Similarly, owing to $\partial_{3} u^{3}=-\partial_{1} u^{1}-\partial_{2} u^{2}$, we estimate

$$
I_{j} \leq c_{0}\left(\left\|u^{1}\right\|_{L^{s}\left(T_{0}, T ; L^{q}\right)}+\left\|u^{2}\right\|_{L^{s}\left(T_{0}, T ; L^{q}\right)}\right)\left(\|\nabla \boldsymbol{u}\|_{L^{\infty}\left(T_{0}, t_{0} ; L^{2}\right)}^{2}+\|\Delta \boldsymbol{u}\|_{L^{2}\left(T_{0}, t_{0} ; L^{2}\right)}^{2}\right)
$$

($j=2,3,4$).
Inserting the estimates of I_{1}, I_{2}, I_{3} and I_{4} into the right-hand side of (3.2) and applying Young's inequality, we are arrive at

$$
\begin{aligned}
& \left(\|\nabla \boldsymbol{u}\|_{L^{\infty}\left(T_{0}, t_{0} ; L^{2}\right)}^{2}+\|\Delta \boldsymbol{u}\|_{L^{2}\left(T_{0}, t_{0} ; L^{2}\right)}^{2}\right) \\
& \quad \leq 12 c_{0}\left(\left\|u^{1}\right\|_{L^{s}\left(T_{0}, T ; L^{q}\right)}+\left\|u^{2}\right\|_{L^{s}\left(T_{0}, T ; L^{q}\right)}\right)\left(\|\nabla \boldsymbol{u}\|_{L^{\infty}\left(T_{0}, t_{0} ; L^{2}\right)}^{2}+\|\Delta \boldsymbol{u}\|_{L^{2}\left(T_{0}, t_{0} ; L^{2}\right)}^{2}\right) \\
& \quad+c\left(\|\boldsymbol{f}\|_{L^{2}}^{2}+\left\|\nabla \boldsymbol{u}\left(T_{0}\right)\right\|_{L^{2}}^{2}\right) .
\end{aligned}
$$

In fact, we may choose T_{0} such that

$$
\left\|u^{1}\right\|_{L^{s}\left(T_{0}, T ; L^{q}\right)}+\left\|u^{2}\right\|_{L^{s}\left(T_{0}, T ; L^{q}\right)} \leq \frac{1}{24 c_{0}} .
$$

Accordingly,

$$
\begin{equation*}
\|\nabla \boldsymbol{u}\|_{L^{\infty}\left(T_{0}, t_{0} ; L^{2}\right)}^{2}+\|\Delta \boldsymbol{u}\|_{L^{2}\left(T_{0}, t_{0} ; L^{2}\right)}^{2} \leq 2 c\left(\mid \boldsymbol{f}\left\|_{L^{2}}^{2}+\right\| \nabla \boldsymbol{u}\left(T_{0}\right) \|_{L^{2}}^{2}\right) . \tag{3.4}
\end{equation*}
$$

As the right-hand side of (3.4) is independent of t_{0}, we deduce from (3.4) that \boldsymbol{u} is strong in [$\left.\tau, T_{*}\right]$. However, this contradicts the definition of T_{*}. Whence, the statement of the theorem is true.

4. Proof of Theorem 1.3

Let $0<r_{0}<r$. By our assumption of Theorem 1.3 and Lemma 2.5, we see that \boldsymbol{u} is a local suitable weak solution to (1.1), (1.2) in Q_{r}. As it has been proved in [14], such solutions are regular outside a singular set $\Sigma \subset Q_{r}$ whose one-dimensional Hausdorff measure is zero (cf. Remark 2.4). In particular, Σ does not contain a one-dimensional subset. Thus, there exists $0<r_{0}<\rho<r$ and a sufficiently small $\varepsilon>0$, such that \boldsymbol{u} is strong in the region

$$
A_{\rho, \varepsilon} \times\left(t_{0}-\rho^{2}, t_{0}\right):=\left\{\rho-\varepsilon<\left|x_{0}-x\right|<\rho+\varepsilon\right\} \times\left(t_{0}-\rho^{2}, t_{0}\right)
$$

Let $\zeta \in C^{\infty}\left(\mathbb{R}^{3}\right)$ such that $\operatorname{supp}(\zeta) \subset B_{\rho+\varepsilon}$ and $\zeta \equiv 1$ on $\overline{B_{\rho}\left(x_{0}\right)}$.
Let $\pi_{\mathrm{hm}}, \pi_{1}, \pi_{2}$ and π_{3} denote the local pressure on Q_{r}, which has been defined in Lemma 2.2. As before, set $\boldsymbol{v}:=$ $\boldsymbol{u}+\nabla \pi_{\mathrm{hm}}$. Since $\pi_{\mathrm{hm}}(t)$ is harmonic in B_{r}, π_{hm} together with its derivatives $D^{\alpha} \pi_{\mathrm{hm}}$ for any multi-index α are continuous on $\overline{Q_{\rho+\varepsilon}}$.

Next, set

$$
\boldsymbol{w}:=\mathbf{P}(\zeta \boldsymbol{v})=\zeta \boldsymbol{v}-\nabla Q
$$

where \mathbf{P} denotes the usual Helmholtz projection and Q is defined by the Newton potential N as follows:

$$
Q:=-N *(\nabla \zeta \cdot \boldsymbol{v}) \quad \text { in } \quad \mathbb{R}^{3} \times\left(t_{0}-\rho^{2}, t_{0}\right)
$$

Clearly, $Q=\Delta^{-1}(\nabla \zeta \cdot \boldsymbol{v})$. Furthermore, note that as $\operatorname{supp}(\zeta) \subset A_{\rho, \varepsilon}$ there holds $\nabla \zeta \cdot \boldsymbol{v} \in L^{\infty}\left(t_{0}-\rho^{2}, t_{0} ; W^{1,2}\right)$ it follows that

$$
\begin{equation*}
\nabla Q \in L^{\infty}\left(t_{0}-\rho^{2}, t_{0} ; W^{2,2}\right), \quad \partial_{t} Q \in L^{\infty}\left(t_{0}-\rho^{2}, t_{0} ; W^{1,2}\right) \tag{4.1}
\end{equation*}
$$

Now, it remains to verify that \boldsymbol{w} solves the Navier-Stokes equation in $\mathbb{R}^{3} \times\left(t_{0}-\rho^{2}, t_{0}\right)$ with right-hand side $\overline{\boldsymbol{f}} \in L^{2}$, which is defined later.

First, let us recall that \boldsymbol{v} solves the equation

$$
\begin{equation*}
\partial_{t} \boldsymbol{v}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}-\Delta \boldsymbol{u}=-\nabla\left(\pi_{1}+\pi_{2}+\pi_{3}\right)+\boldsymbol{f} \quad \text { in } \quad Q_{r} . \tag{4.2}
\end{equation*}
$$

We evaluate the convective term as follows

$$
\begin{aligned}
(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & =\nabla \cdot(\boldsymbol{v} \otimes \boldsymbol{v})-\nabla \cdot\left(\boldsymbol{v} \otimes \nabla \pi_{\mathrm{hm}}\right)-\nabla \cdot\left(\nabla \pi_{\mathrm{hm}} \otimes \boldsymbol{v}\right)-\nabla \cdot\left(\nabla \pi_{\mathrm{hm}} \otimes \nabla \pi_{\mathrm{hm}}\right) \\
& =(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}-(\boldsymbol{v} \cdot \nabla) \nabla \pi_{\mathrm{hm}}-\left(\nabla \pi_{\mathrm{hm}} \cdot \nabla\right) \boldsymbol{v}-\frac{1}{2} \nabla\left|\nabla \pi_{\mathrm{hm}}\right|^{2} \\
& =(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}+\boldsymbol{f}_{1} .
\end{aligned}
$$

Clearly, $\boldsymbol{f}-\zeta \boldsymbol{f}_{1} \in L^{2}$. From (4.2) multiplying both sides by ζ, we deduce that

$$
\begin{align*}
& \partial_{t} \boldsymbol{w}+\zeta(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}-\Delta \boldsymbol{w} \\
& \quad=-2 \nabla \zeta \cdot \nabla \boldsymbol{v}-\Delta \zeta \boldsymbol{v}-\zeta \nabla\left(\pi_{1}+\pi_{2}+\pi_{3}\right)-\nabla\left(\partial_{t} Q+\Delta Q\right)+\zeta \boldsymbol{f}-\zeta \boldsymbol{f}_{1} . \tag{4.3}
\end{align*}
$$

On the other hand, we find:

$$
\begin{aligned}
(\boldsymbol{w} \cdot \nabla) \boldsymbol{w} & =(\zeta \boldsymbol{v} \cdot \nabla)(\zeta \boldsymbol{v})-((\zeta \boldsymbol{v}) \cdot \nabla) \nabla Q-(\nabla Q \cdot \nabla)(\zeta \boldsymbol{v})+\frac{1}{2} \nabla|\nabla Q|^{2} \\
& =\zeta(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}+(\zeta \boldsymbol{v} \cdot \nabla)((\zeta-1) \boldsymbol{v})-((\zeta \boldsymbol{v}) \cdot \nabla) \nabla Q-(\nabla Q \cdot \nabla)(\zeta \boldsymbol{v})+\frac{1}{2} \nabla|\nabla Q|^{2} \\
& =: \zeta(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}+\boldsymbol{f}_{2}+\frac{1}{2} \nabla|\nabla Q|^{2} .
\end{aligned}
$$

Observing (4.1) and recalling that $\nabla \boldsymbol{u} \in V^{2}\left(Q_{\rho+\varepsilon}\right)$ we infer that $\boldsymbol{f}_{2} \in L^{2}\left(t_{0}-\rho^{2}, t_{0} ; L^{2}\right)$. Inserting this identity into (4.3), we arrive at

$$
\partial_{t} \boldsymbol{w}+(\boldsymbol{w} \cdot \nabla) \boldsymbol{w}-\Delta \boldsymbol{w}=-\nabla P+\overline{\boldsymbol{f}} \quad \text { in } \quad \mathbb{R}^{3} \times\left(t_{0}-\rho^{2}, t_{0}\right)
$$

where

$$
\begin{aligned}
& P:=\zeta\left(\pi_{1}+\pi_{2}+\pi_{3}\right)+\partial_{t} Q-\Delta Q+\frac{1}{2}|\nabla Q|^{2} \\
& \overline{\boldsymbol{f}}:=\nabla \zeta\left(\pi_{1}+\pi_{2}+\pi_{3}\right)+\zeta \boldsymbol{f}-\zeta \boldsymbol{f}_{1}+\boldsymbol{f}_{2}-2 \nabla \zeta \cdot \nabla \boldsymbol{v}-(\Delta \zeta) \boldsymbol{v}
\end{aligned}
$$

As $\overline{\boldsymbol{f}} \in L^{2}\left(t_{0}-\rho^{2}, t_{0} ; L^{2}\right)$, the claim follows thanks to Theorem 3.1.

Acknowledgements

H.-O. Bae was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2004601), while J. Wolf was supported by the Brain Pool Project of the Korean Federation of Science and Technology Societies (141S-1-3-0022).

References

[1] H.-O. Bae, H.J. Choe, L^{∞}-bound of weak solutions to Navier-Stokes equations, in: Proceedings of the Korea-Japan Partial Differential Equations Conference, Taejon, 1996, in: Lecture Notes Ser., vol. 39, Seoul Nat. Univ., Seoul, 1997, 13 p.
[2] H.-O. Bae, H.J. Choe, A regularity criterion for the Navier-Stokes equations, Commun. Partial Differ. Equ. 32 (2007) 1173-1187.
[3] H. Beirão da Veiga, On the smoothness of a class of weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech. 2 (4) (2000) 315-323.
[4] D. Chae, H.J. Choe, Regularity of solutions to the Navier-Stokes equation, Electron. J. Differ. Equ. 1999 (5) (1999) 1-7.
[5] D. Chae, K. Kang, J. Lee, On the interior regularity of suitable weak solutions to the Navier-Stokes equations, Commun. Partial Differ. Equ. 32 (7-9) (2007) 1189-1207.
[6] E.B. Fabes, B.F. Jones, N.M. Riviere, The initial value problem for the Navier-Stokes equations with data in L^{p}, Arch. Ration. Mech. Anal. 45 (1972) 222-240.
[7] G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. I, Linearized Steady Problems, vol. 38, Springer-Verlag, New York, 1994.
[8] G. Galdi, C. Simader, H. Shor, On the Stokes problem in Lipschitz domains, Ann. Mat. Pura Appl. (4) 167 (1994) 147-1633.
[9] I. Kukavica, M. Ziane, One-component regularity for the Navier-Stokes equations, Nonlinearity 19 (2) (2006) 453-469.
[10] J. Neustupa, A. Novotný, P. Penel, Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, in: A. Sequeira, H. Beirão da Veiga, J.H. Videman (Eds.), Applied Nonlinear Analysis, Kluwer/Plenum, New York, 1999, pp. 391-402.
[11] J. Neustupa, M. Pokorny, An interior regularity criterion for an axially symmetric suitable weak solution to the Navier-Stokes equations, J. Math. Fluid Mech. 2 (2000) 381-399.
[12] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal. 9 (1962) 187-195.
[13] M. Struwe, On partial regularity results for the Navier-Stokes equations, Commun. Pure Appl. Math. 41 (1988) 437-458.
[14] J. Wolf, On the local regularity of suitable weak solutions to the generalized Navier-Stokes equations, Ann. Univ. Ferrara 61 (1) (2015) 149-171.
[15] J. Wolf, On the local pressure of the Navier-Stokes equations and related systems (2015), submitted for publication.
[16] Y. Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal. 9 (4) (2002) 563-578.

[^0]: E-mail addresses: hobae@ajou.ac.kr (H.-O. Bae), jwolf@math.hu-berlin.de (J. Wolf).
 http://dx.doi.org/10.1016/j.crma.2015.10.020
 1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

