EI SEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Harmonic analysis/Functional analysis

Strong convergence in the weighted setting of operator-valued Fourier series defined by the Marcinkiewicz multipliers

Fonctions de la classe de Marcinkiewicz et la convergence forte des séries d'opérateurs de Fourier associées

Earl Berkson

Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL 61801, USA

ARTICLE INFO

Article history: Received 4 July 2015 Accepted 4 November 2015 Available online 11 January 2016

Presented by Gilles Pisier

Keywords:
Marcinkiewicz class
Fourier multiplier
Fourier series
Modulus mean-bounded operator
Shift operator
A_p weight sequence

ABSTRACT

Suppose that 1 and let <math>w be a bilateral weight sequence satisfying the discrete Muckenhoupt A_p weight condition. We show that every Marcinkiewicz multiplier $\psi: \mathbb{T} \to \mathbb{C}$ has an associated operator-valued Fourier series which serves as an analogue in $\mathfrak{B}\left(\ell^p\left(w\right)\right)$ of the usual Fourier series of ψ , and this operator-valued Fourier series is everywhere convergent in the strong operator topology. In particular, we deduce that the partial sums of the usual Fourier series of ψ are uniformly bounded in the Banach algebra of Fourier multipliers for $\ell^p\left(w\right)$. These results transfer to the framework of invertible, modulus mean-bounded operators acting on L^p spaces of sigma-finite measures.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soient 1 et <math>w un poids dans la classe $A_p(\mathbb{Z})$. Cette note établit (dans la topologie forte des opérateurs) la convergence des séries de Fourier (à valeurs dans $\mathfrak{B}\left(\ell^p(w)\right)$) pour les «convolutions de Stieltjes», où ces convolutions sont déterminées par les fonctions ψ appartenant à la classe de Marcinkiewicz $\mathfrak{M}_1(\mathbb{T})$. Les propriétés de convergence pour ces séries de Fourier ayant valeurs dans $\mathfrak{B}\left(\ell^p(w)\right)$ révèlent des propriétés de convergence des séries de Fourier traditionnelles pour les fonctions $\psi \in \mathfrak{M}_1(\mathbb{T})$. En particulier, les sommes partielles de la série de Fourier traditionnelle pour un $\psi \in \mathfrak{M}_1(\mathbb{T})$ quelconque sont uniformément bornées dans la norme des p-multiplicateurs pour $\ell^p(w)$. Ces résultats se transfèrent immédiatement au cadre d'une bijection linéaire arbitraire T telle que T soit un opérateur préservant la disjonction dont le module linéaire est à moyennes bornées.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The symbol K with (a possibly empty) set of subscripts denotes a constant which depends only on those subscripts, and which may change in value from one occurrence to another. The characteristic function of an arc $\mathfrak{A}\subseteq\mathbb{T}$ will be symbolized by $\chi_{\mathfrak{A}}$. For our treatment of Marcinkiewicz multipliers we shall make free use of the standard notation for the sequence $\{t_k\}_{k=-\infty}^{\infty}$ of dyadic points of the interval (0.2π) , which are defined as $2^{k-1}\pi$ if $k \leq 0$, and $2\pi - 2^{-k}\pi$ if k > 0. For $1 , a weight sequence <math>w \equiv \{w_k\}_{k=-\infty}^{\infty}$ belongs to the class $A_p(\mathbb{Z})$ provided that there is a real constant C (called an $A_p(\mathbb{Z})$ weight constant for w) such that

$$\left(\frac{1}{M-L+1}\sum_{k=1}^{M}w_{k}\right)\left(\frac{1}{M-L+1}\sum_{k=1}^{M}w_{k}^{-1/(p-1)}\right)^{p-1}\leq C,$$

whenever $L \in \mathbb{Z}$, $M \in \mathbb{Z}$, and $L \leq M$. We denote the corresponding sequence space by $\ell^p(w)$. We say that $\psi \in L^{\infty}(\mathbb{T})$ is a *multiplier for* $\ell^p(w)$ (in symbols, $\psi \in M_{p,w}(\mathbb{T})$) provided that convolution by the inverse Fourier transform of ψ defines a bounded operator on $\ell^p(w)$. Specifically, we require:

Definition 1.1.

(i) For each $x \equiv \{x_k\}_{k=-\infty}^{\infty} \in \ell^p(w)$ and each $j \in \mathbb{Z}$, the series

$$(\psi^{\vee} * x)(j) \equiv \sum_{k=-\infty}^{\infty} \psi^{\vee}(j-k) x_k$$
 converges absolutely, and

(ii) the mapping $\mathcal{T}_{\psi}^{(p,w)}: x \in \ell^p(w) \to \psi^{\vee} * x$ is a bounded linear mapping of $\ell^p(w)$ into $\ell^p(w)$.

We then call $\mathcal{T}_{\psi}^{(p,w)}$ the multiplier transform corresponding to ψ , and define the multiplier norm by setting $\|\psi\|_{M_{p,w}(\mathbb{T})} \equiv \left\|\mathcal{T}_{\psi}^{(p,w)}\right\|_{\mathfrak{B}(\ell^p(w))}$. In particular, it is well-known that $\mathfrak{M}_1(\mathbb{T}) \subseteq M_{p,w}(\mathbb{T})$, where $\mathfrak{M}_1(\mathbb{T})$ is the Banach algebra of periodic Marcinkiewicz multipliers, consisting of all functions $\psi \colon \mathbb{T} \to \mathbb{C}$ such that

$$\|\psi\|_{\mathfrak{M}_{1}(\mathbb{T})} \equiv \sup_{z \in \mathbb{T}} |\psi(z)| + \sup_{k \in \mathbb{Z}} \operatorname{var}(\psi, \Delta_{k}) < \infty$$

(here Δ_k is the dyadic arc of \mathbb{T} specified by $\Delta_k = \left\{ \mathrm{e}^{\mathrm{i}\theta} : \theta \in [t_k, t_{k+1}] \right\}$). Moreover, $\|\psi\|_{M_{p,w}(\mathbb{T})} \leq K_{p,C} \|\psi\|_{\mathfrak{M}_1(\mathbb{T})}$. A key structural example of an element of $M_{p,w}(\mathbb{T})$ is furnished, for each $k \in \mathbb{Z}$, by the function $\mathfrak{e}_k(z) \equiv z^k$, whose multiplier transform is \mathcal{L}^k , where \mathcal{L} designates the left bilateral shift on $\ell^p(w)$. In particular, for each $\phi \in L^1(\mathbb{T})$, the $n^{t\underline{h}}$ partial sum of its Fourier series $s_n\left(\phi, \mathrm{e}^{\mathrm{i}\theta}\right) \equiv \sum_{k=-n}^n \widehat{\phi}(k) \mathrm{e}^{\mathrm{i}k\theta}$ belongs to $M_{p,w}(\mathbb{T})$, with multiplier transform expressed by

$$\mathcal{T}_{s_{n}(\phi,\cdot)}^{(p,w)} = \sum_{k=-n}^{n} \widehat{\phi}(k) \mathcal{L}^{k}.$$

For further background items concerning our framework, the reader is referred to [1–3]. Our main result can now be stated as follows.

Theorem 1.2. Suppose that $\psi \in \mathfrak{M}_1(\mathbb{T})$. Then whenever $1 , and <math>w \in A_p(\mathbb{Z})$ with an $A_p(\mathbb{Z})$ weight constant C, we have:

$$\sup \left\{ \left\| s_{n}\left(\psi_{z},\left(\cdot\right)\right) \right\|_{M_{p,w}\left(\mathbb{T}\right)} : n \geq 0, z \in \mathbb{T} \right\} \leq K_{p,C} \left\| \psi \right\|_{\mathfrak{M}_{1}\left(\mathbb{T}\right)},\tag{1.1}$$

where $\psi_{z}(\cdot) \equiv \psi((\cdot)z)$. Consequently, $\sum_{k=-\infty}^{\infty} z^{k} \widehat{\psi}(k) \mathcal{L}^{k}$, the Fourier series of $\mathcal{T}_{\psi_{z}}^{(p,w)}$ relative to the strong operator topology of $\mathfrak{B}\left(\ell^{p}(w)\right)$, converges in the strong operator topology to $\mathcal{T}_{\psi_{z}}^{(p,w)}$ at each $z \in \mathbb{T}$.

Thanks to the Dominated Ergodic Estimate Theorem of F.J. Martín-Reyes and A. de la Torre (in the form and notation of Theorem 2.5 in [3]), one can transfer Theorem 1.2 to a broader framework, where the following outcome ensues.

Theorem 1.3. Suppose that $1 , <math>(\Omega, \mu)$ is a sigma-finite measure space, and $\mathfrak{U} \in \mathfrak{B}\left(L^p\left(\mu\right)\right)$ is an invertible, disjoint, modulus mean-bounded operator. Let $\mathcal{E}\left(\cdot\right) : \mathbb{R} \to \mathfrak{B}\left(L^p\left(\mu\right)\right)$ be the (idempotent-valued) spectral decomposition of \mathfrak{U} , and let $\psi \in \mathfrak{M}_1\left(\mathbb{T}\right)$ be a continuous function. Then

$$\sup \left\{ \left\| \sum_{k=-n}^{n} z^{k} \widehat{\psi}(k) \mathfrak{U}^{k} \right\|_{\mathfrak{B}(L^{p}(\mu))} : n \geq 0, z \in \mathbb{T} \right\} \leq K_{p,\mathfrak{C}} \|\psi\|_{\mathfrak{M}_{1}(\mathbb{T})}, \tag{1.2}$$

where $\mathfrak C$ is the common $A_p(\mathbb Z)$ weight constant of the weights $w^{(x)}$, $x \in \Omega$. Moreover, $\sum_{k=-\infty}^\infty z^k \widehat{\psi}(k) \mathfrak U^k$ the Fourier series (in the strong operator topology of $\mathfrak B\left(L^p(\mu)\right)$) for the Stieltjes convolution $\int_{[0,2\pi]}^{\mathfrak G} \psi_z\left(e^{\mathrm{i}t}\right) \,\mathrm{d}\mathcal E\left(t\right)$ converges to $\int_{[0,2\pi]}^{\mathfrak G} \psi_z\left(e^{\mathrm{i}t}\right) \,\mathrm{d}\mathcal E\left(t\right)$ in the strong operator topology at each $z \in \mathbb T$.

2. Proof of Theorem 1.2

The key to demonstration of Theorem 1.2 resides in the following seminal forerunner.

Theorem 2.1. Suppose that $1 , <math>w \in A_p(\mathbb{Z})$ with an $A_p(\mathbb{Z})$ weight constant C, and $\psi \in \mathfrak{M}_1(\mathbb{T})$. Then we have:

$$\sup \left\{ \left\| \mathcal{T}_{\mathsf{s}_{n}(\psi,\cdot)}^{(p,w)} \mathcal{T}_{\mathsf{X}\Delta_{m}}^{(p,w)} \right\|_{\mathfrak{B}(\ell^{p}(w))} : n \geq 0, m \in \mathbb{Z} \right\} \leq K_{p,C} \left\| \psi \right\|_{\mathfrak{M}_{1}(\mathbb{T})}. \tag{2.1}$$

Proof (Sketch). For each non-negative integer \mathfrak{m} , define $\mathcal{I}_{\mathfrak{m}}$ to be the arc $\{e^{\mathrm{i}\theta}:t_{-\mathfrak{m}}\leq\theta\leq t_{\mathfrak{m}}\}$, and let $\chi_{\mathfrak{m}}$ symbolize the characteristic function, defined on \mathbb{T} , of $\mathcal{I}_{\mathfrak{m}}$. Define $\psi_{\mathfrak{m}}\in BV(\mathbb{T})$ by putting $\psi_{\mathfrak{m}}\equiv\psi\chi_{\mathfrak{m}}$. Temporarily fix an arbitrary non-negative integer n, and observe that there is a non-negative integer ν (in general, depending on n) such that, for arbitrary $z\in\mathbb{T}$,

$$\left\| s_n\left(\psi_{\mathsf{Z}},\cdot\right) - s_n\left(\left(\left(\psi_{\mathsf{V}}\right)_{\mathsf{Z}},\cdot\right)\right) \right\|_{M_{p,w}(\mathbb{T})} < \|\psi\|_{\mathfrak{M}_1(\mathbb{T})}. \tag{2.2}$$

Keeping this value of ν fixed, we now shift our attention to ψ_{ν} , in order to circumvent the dependence of ψ_{ν} on n by reducing matters to the pleasant operator-valued Fourier series phenomena associated with multiplier transforms defined by $BV(\mathbb{T})$ functions (as evinced in Theorem 4.4 of [1] and Theorem 4.1 of [2], which apply to spectral decomposability set in a broader framework that specializes to ours). Temporarily fix $z \in \mathbb{T}$, $m \in \mathbb{Z}$, m non-negative. For all $\varsigma \in \mathbb{T}$, let us consider the following expression.

$$F(\varsigma) \equiv \mathcal{T}_{\left((\psi_{\nu})_{z} \mathsf{X} \Delta_{m}\right)_{\varsigma}}^{(p,w)}. \tag{2.3}$$

On the right-hand side of (2.3) we can apply in succession the following items from [2]: Theorem 4.1; Theorem 4.5; and (3.2). Along with careful simplifications, this procedure shows that for arbitrary fixed $z \in \mathbb{T}$,

$$\sup \left\{ \left\| s_N \left(\left((\psi_{\nu})_Z \chi_{\Delta_m} \right)_{\varsigma}, \cdot \right) \right\|_{M_{p,w}(\mathbb{T})} : N \ge 0, \varsigma \in \mathbb{T} \right\} \le K_{p,c} \left\| \left\{ (\psi_{\nu})_Z \chi_{\Delta_m} \right\} (\cdot) \right\|_{BV(\mathbb{T})}. \tag{2.4}$$

In order to profit from this estimate, notice that the $BV(\mathbb{T})$ function involved in the majorant of (2.4) – specifically, $\varsigma \in \mathbb{T} \mapsto \left\{ (\psi_{\nu})_z \ \chi_{\Delta_m} \right\}(\varsigma)$ – vanishes outside at most two disjoint closed subarcs of the fixed dyadic arc Δ_m , and coincides with ψ_z on each of these subarcs. Hence if we confine z to the arc $\mathcal{A}_m \equiv \left\{ e^{i\theta} : 0 \le \theta \le t_{m+2} - t_{m+1} \right\}$, straightforward reasoning yields

$$\left\|\left\{(\psi_{\nu})_{z} \chi_{\Delta_{m}}\right\}(\cdot)\right\|_{BV(\mathbb{T})} \leq K \|\psi\|_{\mathfrak{M}_{1}(\mathbb{T})}.$$

Applying this to (2.4) we infer that

$$\sup \left\{ \left\| s_{N} \left(\left((\psi_{\nu})_{z} \chi_{\Delta_{m}} \right)_{\varsigma}, \cdot \right) \right\|_{M_{p,w}(\mathbb{T})} : N \geq 0, \, \varsigma \in \mathbb{T}, z \in \mathcal{A}_{m} \right\} \leq K_{p,C} \, \|\psi\|_{\mathfrak{M}_{1}(\mathbb{T})}. \tag{2.5}$$

By specializing the result in (2.5) to the case where the parameters $\varsigma \in \mathbb{T}$ and $z \in \mathcal{A}_m$ are both taken to be 1, we arrive at the following central estimate.

$$\sup\left\{\left\|s_{N}\left(\psi_{\nu}\chi_{\Delta_{m}},\cdot\right)\right\|_{M_{p,w}(\mathbb{T})}:N\geq0\right\}\leq K_{p,C}\left\|\psi\right\|_{\mathfrak{M}_{1}(\mathbb{T})}.\tag{2.6}$$

Extensive calculations proceeding from (2.6) can be carried out to show that

$$\sup\left\{\left\|\chi_{\Delta_{m}}s_{N}\left(\psi_{\nu},\cdot\right)\right\|_{M_{p,w}\left(\mathbb{T}\right)}:N\geq0\right\}\leq K_{p,C}\left\|\psi\right\|_{\mathfrak{M}_{1}\left(\mathbb{T}\right)}.$$

We omit the details here for expository reasons. Applying this last estimate to the fixed but arbitrary non-negative integer n in (2.2), we readily deduce (2.1) with the aid of standard features of A_p weighted spaces. \Box

Proof of Theorem 1.2. When Theorem 2.1 is specialized to the setting p=2 and applied in conjunction with the Littlewood-Paley inequalities for weighted spaces, we easily see that (1.1) holds for all $A_2(\mathbb{Z})$ weights. By invoking a suitable version of the recent "streamlined" rendition of Rubio de Francia's Extrapolation Theorem (see Theorem 3.1 of [4]), we readily obtain (1.1) in the full range $1 . The remaining conclusion of Theorem 1.2 can now be seen from this general case of (1.1) by calculations based on the norm density in <math>\ell^p(w)$ of the finitely supported vectors. \square

References

- [1] E. Berkson, Spectral theory and operator ergodic theory on super-reflexive Banach spaces, Stud. Math. 200 (2010) 221–246.
- [2] E. Berkson, Rotation methods in operator ergodic theory, N.Y. J. Math. 17 (2011) 21-39, located online at http://nyjm.albany.edu/j/2011/17-2v.pdf.
- [3] E. Berkson, Marcinkiewicz multipliers of higher variation and summability of operator-valued Fourier series, Stud. Math. 222 (2014) 123-155.
- [4] J. Duoandikoetxea, Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 (2011) 1886–1901.