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Suppose that 1 < p < oo and let w be a bilateral weight sequence satisfying the discrete
Muckenhoupt A, weight condition. We show that every Marcinkiewicz multiplier v :
T — C has an associated operator-valued Fourier series which serves as an analogue in
B (Ep (w)) of the usual Fourier series of v, and this operator-valued Fourier series is
everywhere convergent in the strong operator topology. In particular, we deduce that the
partial sums of the usual Fourier series of ¥ are uniformly bounded in the Banach algebra
of Fourier multipliers for ¢P (w). These results transfer to the framework of invertible,
modulus mean-bounded operators acting on LP spaces of sigma-finite measures.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

Soient 1 < p < oo et w un poids dans la classe Ap (Z). Cette note établit (dans la topologie
forte des opérateurs) la convergence des séries de Fourier (a valeurs dans B ((p (w))) pour
les «convolutions de Stieltjes», ot ces convolutions sont déterminées par les fonctions v
appartenant a la classe de Marcinkiewicz 9t (T). Les propriétés de convergence pour ces
séries de Fourier ayant valeurs dans B (ZP (w)) révélent des propriétés de convergence
des séries de Fourier traditionnelles pour les fonctions ¥ € 91 (T). En particulier, les
sommes partielles de la série de Fourier traditionnelle pour un ¢ € 9% (T) quelconque
sont uniformément bornées dans la norme des p-multiplicateurs pour ¢P (w). Ces résultats
se transférent immédiatement au cadre d'une bijection linéaire arbitraire T telle que T soit
un opérateur préservant la disjonction dont le module linéaire est a moyennes bornées.
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1. Introduction

The symbol K with (a possibly empty) set of subscripts denotes a constant which depends only on those subscripts,
and which may change in value from one occurrence to another. The characteristic function of an arc 2 € T will be sym-
bolized by xg. For our treatment of Marcinkiewicz multipliers we shall make free use of the standard notation for the
sequence {t};2 _., of dyadic points of the interval (0.27), which are defined as 217 if k<0, and 27 — 27 ¥ if k > 0. For
1< p < o0, a weight sequence w = {wy}z2__ belongs to the class Ap (Z) provided that there is a real constant C (called
an Aj (Z) weight constant for w) such that

M 1 M p-1
“1/p-1)
(M L—HZ )( —L+1k§W’< ) =G

whenever L € Z, M € Z, and L < M. We denote the corresponding sequence space by ¢P (w). We say that ¢ € L*° (T) is a
multiplier for £ (w) (in symbols, ¥ € M}, w (T)) provided that convolution by the inverse Fourier transform of ¢ defines a
bounded operator on ¢P (w). Specifically, we require:

Definition 1.1.

(i) For each x = {x};2__ €¢P (w) and each j € Z, the series

—0o0

(\/f *X (]) Z ¥ (j — k) x converges absolutely, and

k=—o00

(ii) the mapping 7:;”"”) :x€£P (w) — ¢V xx is a bounded linear mapping of £P (w) into £P (w).

We then call ’ﬁ;p’w) the multiplier transform corresponding to v, and define the multiplier norm by setting
11l ) = Hf/fp’w) H . In particular, it is well-known that 9% (T) € Mp, (T), where 90 (T) is the Banach al-

B(LP (W)
gebra of periodic Marcinkiewicz multipliers, consisting of all functions ¢r: T — C such that

¥ llom, () = SUP [ (2)| + supvar (¥, Ag) < 00

keZ

(here Ay is the dyadic arc of T specified by A, = { el? 19 e [ty, tk+1]}) Moreover, ||1/r||Mp w(m < Kp.c ¥ llon, (r)- A key struc-

tural example of an element of M,  (T) is furnished, for each k € Z, by the function ¢ (z) = Z¥, whose multiplier transform
is £, where £ designates the leﬁ bilateral shift on ¢? (w). In particular, for each ¢ € L1 (T), the n" partial sum of its
Fourier series sy, (¢, e‘9) = Zzzfn & (k) e belongs to My w (T), with multiplier transform expressed by

Takony = Z $ (o L~

k=—n

For further background items concerning our framework, the reader is referred to [1-3]. Our main result can now be stated
as follows.

Theorem 1.2. Suppose that y € 9t (T). Then whenever 1 < p < oo, and w € Ap (Z) with an A, (Z) weight constant C, we have:

sup { lsn Wz, D)l o) 112 0.2 € T} < Kpc 1l my (11)

where ¥, (-) = ¥ (() 2). Consequently, > po_ z 1} (k) LK, the Fourier series of 7:155"”) relative to the strong operator topology of
B (Zl’ (w)), converges in the strong operator topology to mf’w) ateach z € T.

Thanks to the Dominated Ergodic Estimate Theorem of FJ. Martin-Reyes and A. de la Torre (in the form and notation of
Theorem 2.5 in [3]), one can transfer Theorem 1.2 to a broader framework, where the following outcome ensues.

Theorem 1.3. Suppose that 1 < p < oo, (2, |4) is a sigma-finite measure space, and 1 € B (Lp (u)) is an invertible, disjoint, modulus
mean-bounded operator. Let £(-) : R — B (Lp (u)) be the (idempotent-valued) spectral decomposition of 4\, and let y» € 9t (T) be
a continuous function. Then
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n
sup{ | D 2V o n>0,zeTy <Kpell¥ilon, - (1.2)
k=—n B(LP (1))

where € is the common A, (Z) weight constant of the weights w®, x € Q. Moreover, Yo z"{/'f (k) 41¥ the Fourier series (in the
strong operator topology of B (LP (1))) for the Stieltjes convolution f[?))ln] ¥, (elt) d& (t) converges to f[?iz:r] ¥z (elt) d€ (t) in the
strong operator topology at each z € T.

2. Proof of Theorem 1.2
The key to demonstration of Theorem 1.2 resides in the following seminal forerunner.

Theorem 2.1. Suppose that 1 < p < oo, w € Ap (Z) with an Ap, (Z) weight constant C, and v € My (T). Then we have:

sup“

Proof (Sketch). For each non-negative integer m, define Z,,, to be the arc {eie it <0< tm}. and let x, symbolize the
characteristic function, defined on T, of Z,. Define v, € BV (T) by putting ¥y, = ¥ xm. Temporarily fix an arbitrary non-
negative integer n, and observe that there is a non-negative integer v (in general, depending on n) such that, for arbitrary
zeT,

(p,w) 4~(p,w)
Tsuw) Tham H B (P (w))

:nzO,meZ} < Kp.c 1 lom, 1) - (21)

[0 2o ) = su ((0)z2 D,y < 1 oy - (2.2)

Keeping this value of v fixed, we now shift our attention to i, in order to circumvent the dependence of v, on n by
reducing matters to the pleasant operator-valued Fourier series phenomena associated with multiplier transforms defined
by BV (T) functions (as evinced in Theorem 4.4 of [1] and Theorem 4.1 of [2], which apply to spectral decomposability set
in a broader framework that specializes to ours). Temporarily fix z € T, m € Z, m non-negative. For all ¢ € T, let us consider
the following expression.

— 7w
FO =T roxam). (2.3)
On the right-hand side of (2.3) we can apply in succession the following items from [2]: Theorem 4.1; Theorem 4.5; and
(3.2). Along with careful simplifications, this procedure shows that for arbitrary fixed z € T,

sup { Jsn (@2 xa0), ) N>0ce T} < Kp.c {0z Xan} Ollayery- (24)
In order to profit from this estimate, notice that the BV (T) function involved in the majorant of (2.4) - specifically, ¢ €
T+ {(%)Z XAm} (¢) - vanishes outside at most two disjoint closed subarcs of the fixed dyadic arc A, and coincides with
¥, on each of these subarcs. Hence if we confine z to the arc A, = {eie 10<6 <tmy2 —tm+1 }, straightforward reasoning
yields

”Mp,w(T)

Applying this to (2.4) we infer that

supiHSN (((%)zXAm)g,-) :NzO,geT,zeAm} < Kp.c 1¥llon, (1) - (2.5)

By specializing the result in (2.5) to the case where the parameters ¢ € T and z € Ay, are both taken to be 1, we arrive at
the following central estimate.

by, oo

sup { s (Vo xans ) g, omy N 2 0] = Ko 19 lom, - (2.6)

Extensive calculations proceeding from (2.6) can be carried out to show that

sup [ | xansn @os )y, ey PN = 0} < Kp.c 1 lom, 1) -

We omit the details here for expository reasons. Applying this last estimate to the fixed but arbitrary non-negative integer n
in (2.2), we readily deduce (2.1) with the aid of standard features of A, weighted spaces. O
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Proof of Theorem 1.2. When Theorem 2.1 is specialized to the setting p = 2 and applied in conjunction with the Littlewood-
Paley inequalities for weighted spaces, we easily see that (1.1) holds for all A, (Z) weights. By invoking a suitable version of
the recent “streamlined” rendition of Rubio de Francia’s Extrapolation Theorem (see Theorem 3.1 of [4]), we readily obtain
(1.1) in the full range 1 < p < oo. The remaining conclusion of Theorem 1.2 can now be seen from this general case of (1.1)
by calculations based on the norm density in ¢P (w) of the finitely supported vectors. 0O
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