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A classical theorem of I.J. Schoenberg characterizes functions that preserve positivity when 
applied entrywise to positive semidefinite matrices of arbitrary size. Obtaining similar 
characterizations in fixed dimension is intricate. In this note, we provide a solution to this 
problem in the polynomial case. As consequences, we derive tight linear matrix inequalities 
for Hadamard powers of positive semidefinite matrices, and a sharp asymptotic bound for 
the matrix cube problem involving Hadamard powers.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Un résultat classique de I.J. Schoenberg caractérise les fonctions préservant la positivité 
lorsqu’elles sont appliquées aux entrées des matrices semi-définies positives de dimension 
arbitraire. Le problème analogue lorsque la dimension est fixe est beaucoup plus complexe 
à résoudre. Dans cette note, nous résolvons ce problème dans le cas où la fonction est 
un polynôme. Nous dérivons de ce résultat des inégalités exactes pour les puissances 
d’Hadamard d’une matrice positive et pour le problème du cube matriciel.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

During the last decade, the study of maps, linear or not, that preserve matrix structures with positivity constraints has 
had at least three different motivations: statistical mechanics, well illustrated in the highly original work of Borcea and 
Brändén on the Lee–Yang and Pólya–Schur programs [7,8]; global optimization algorithms based on the cone of hyperbolic 
or positive definite polynomials [4]; and the statistics of big data, having the correlation matrix of a large number of random 
variables as the central object of study [12,13,15]. Inspired by these works, our investigation evolves out of a classical result 
of Schoenberg [22], by imposing the challenging condition of dealing with matrices of a fixed size.
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Given a set K ⊂ C and an integer N ≥ 1, denote by PN(K ) the set of positive semidefinite N × N matrices with entries 
in K . Also, let D(0, ρ) ⊂ C denote the complex disc of radius ρ > 0 centered at the origin and let D(0, ρ) denote its closure. 
A function f : K → C acts naturally on PN (K ) when applied entrywise:

f [A] := ( f (aij))

for any A = (aij) ∈ PN (K ). Akin to the theory of positive definite functions, it is natural to seek characterizations of those 
functions f such that f [A] is positive semidefinite for all A ∈ PN (K ). This problem has been well studied in the literature. 
The following classical result of Schoenberg [22] classifies functions preserving positivity on matrices of arbitrary dimension. 
Recall that the Gegenbauer (or ultraspherical) polynomials C (λ)

n (x) and the Chebyshev polynomials of the first kind C (0)
n (x) are 

such that

(1 − 2xt + t2)−λ =
∞∑

n=0

C (λ)
n (x)tn (λ > 0), (1 − xt)(1 − 2xt + t2)−1 =

∞∑
n=0

C (0)
n (x)tn.

Theorem 1.1. (See Schoenberg [22].) Fix an integer d ≥ 2 and a continuous function f : [−1, 1] →R.

(i) f (cos ·) is positive definite on the unit sphere Sd−1 ⊂ R
d if and only if f can be written as a non-negative linear combination of 

the polynomials C (λ)
n , where λ = (d − 2)/2:

f (x) =
∑
n≥0

anC (λ)
n (x) (an ≥ 0).

(ii) f [−] : PN ([−1, 1]) → PN (R) for all N ≥ 1 if and only if f is analytic on [−1, 1] and absolutely monotonic on [0, 1], i.e., f has 
a Taylor series with non-negative coefficients convergent on D(0, 1).

For more on absolutely monotonic functions, see the work [3] of Bernstein.
Schoenberg’s work has been extended in several directions; see, for example, [2,5,6,9,16,19,21,23]. However, when the 

dimension N is fixed, obtaining a useful characterization of entrywise functions preserving PN is difficult and remains out 
of reach as of today. A necessary condition on a continuous function f : (0, ∞) → R to preserve positivity comes from an 
inspired idea of Loewner, as developed by Horn in his doctoral dissertation; see [18]. The result was later extended in [12]
to work with matrices of low rank. To state the result, let 1N×N denote the N × N matrix with each entry equal to 1.

Theorem 1.2. (See Horn [18], Guillot–Khare–Rajaratnam [12].) Suppose f : I → R, where I := (0, ρ) and 0 < ρ ≤ ∞. Fix an integer 
N ≥ 2 and suppose that f [A] ∈PN (R) for any matrix A = a1N×N +uuT , where a ∈ (0, ρ) and u ∈ [0, 

√
ρ − a)N . Then f ∈ C N−3(I), 

with

f (k)(x) ≥ 0 ∀x ∈ I, 0 ≤ k ≤ N − 3,

and f (N−3) is a convex non-decreasing function on I . Furthermore, if f ∈ C N−1(I), then f (k)(x) ≥ 0 for all x ∈ I and 0 ≤ k ≤ N − 1.

We note that Theorem 1.2 is sharp in the sense that there exist functions which preserve positivity on PN ((0, ρ)), but 
not on PN+1((0, ρ)). For example, f (x) = xα with α ∈ (N − 2, N − 1) is such a function; see [10,11,17] for more details. 
Note also that increasing the dimension N in Theorem 1.2 allows the recovery of a version of Schoenberg’s Theorem 1.1(ii).

The study of functions that preserve positivity has recently received renewed attention, due to their application in high-
dimensional probability and statistics. In practical applications, functions are often applied entrywise to covariance and 
correlation matrices, in order to improve their properties, such as better conditioning, or to induce a Markov random field 
structure; see [14,15]. Whether or not the resulting matrices are positive semidefinite is critical for the validity of these pro-
cedures. Allowing for arbitrary dimensions is unnecessarily restrictive, as the dimension of the problem is usually known. 
Motivated by such applications, characterizations of positivity preserving functions have recently been obtained in fixed di-
mensions, under further constraints that arise in practice; see, e.g., [12,13,15]. In this context, our note provides an effective 
criterion for verifying positivity preservation for polynomial maps.

2. Main result

We reconsider Schoenberg’s original problem in fixed dimension for the case where f is a polynomial. Our main result 
characterizes the polynomials of degree N that preserve positivity on PN(D(0, ρ)).

Theorem 2.1. Fix ρ > 0 and integers M ≥ N ≥ 1, and let f (z) = ∑N−1
j=0 c j z j + cM zM be a polynomial with real coefficients. For any 

vector d := (d0, . . . , dN−1) with non-zero entries, define

C(d) = C(d; zM; N,ρ) :=
N−1∑ (

M

j

)2(M − j − 1

N − j − 1

)2 ρM− j

d j
, (1)
j=0
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and let c := (c0, . . . , cN−1). The following are equivalent.

(i) f [−] preserves positivity on PN(D(0, ρ)).
(ii) The vector (c0, . . . , cN−1, cM) belongs to the set

[0,∞)N+1 ∪ (
(0,∞)N × [−C(c)−1,∞)

)
.

(iii) f [−] preserves positivity on P1
N((0, ρ)), the set of matrices in PN((0, ρ)) having rank at most 1.

The necessity of having c0, . . . , cN−1 ≥ 0 when f [−] preserves positivity follows from Theorem 1.2.
The constant C(c) = C(c; zM ; N, ρ) provides a threshold for polynomials that preserve positivity on PN . Our result thus 

provides a quantitative version in fixed dimension of Schoenberg’s result, Theorem 1.1(ii), as well as of Horn’s result, Theo-
rem 1.2. Surprisingly, preserving positivity on PN (D(0, ρ)) is equivalent to preserving positivity on the much smaller set of 
real rank-one matrices.

The proof of Theorem 2.1 relies on a careful analysis of the polynomial

pt[A] := det(t(c01N×N + c1 A + · · · + cN−1 A◦(N−1)) − A◦M)

for rank-one matrices A ∈ P1
N (D(0, ρ)). Recall that given a non-increasing N-tuple of non-negative integers, nN ≥ · · · ≥ n1, 

the corresponding Schur polynomial over a field F is the unique polynomial extension to FN of

s(nN ,...,n1)(x1, . . . , xN) := det(x
n j+ j−1
i )

det(x j−1
i )

(2)

for pairwise distinct xi ∈ F. Note that the denominator is precisely the Vandermonde determinant �N (x1, . . . , xN ) :=
det(x j−1

i ) = ∏
1≤i< j≤N (x j − xi).

Theorem 2.2. Let c0 , . . . , cN−1 ∈ F
× be non-zero scalars, where N ≥ 1, and let the polynomial

pt(x) := t(c0 + · · · + cN−1xN−1) − xM ,

where t is a variable and M ≥ N are integers. Let the partition λ(M, N, j) := (M − N + 1, 1, . . . , 1, 0, . . . , 0), with N − j − 1
entries after the first equal to 1 and the remaining j entries equal to 0. The following identity holds for all u = (u1, . . . , uN), 
v = (v1, . . . , v N) ∈ F

N :

det pt[uvT ] = tN−1�N(u)�N(v)

N∏
j=1

c j−1

(
t −

N−1∑
j=0

sλ(M,N, j)(u)sλ(M,N, j)(v)

c j

)
. (3)

Moreover,

sλ(M,N, j)(1, . . . ,1) =
(

M

j

)(
M − j − 1

N − j − 1

)
(0 ≤ j ≤ N − 1). (4)

We now explain how Theorem 2.2 is used to prove (iii) ⇒ (ii) in Theorem 2.1. Suppose f [−] preserves positivity 
on P1

N ((0, ρ)); using Theorem 1.2, it is not hard to show that the coefficients c0, . . . , cN−1 are non-negative, and are 
strictly positive if cM < 0. Now suppose c0, . . . , cN−1 > 0 > cM . With pt(x) as in Theorem 2.2 and t := |cM |−1, the func-
tion |cM |−1 f (x) = pt(x) preserves positivity on rank-one matrices A = uuT , for any u ∈ (0, √ρ)n . Hence, by Equation (3),

0 ≤ det pt[uuT ] = tN−1�N(u)2c0 · · · cN−1

(
t −

N−1∑
j=0

sλ(M,N, j)(u)2

c j

)
. (5)

Letting uk → √
ρ for all k with ul 
= um for l 
= m, we conclude that

t = |cM |−1 ≥
N−1∑
j=0

sλ(M,N, j)(
√

ρ, . . . ,
√

ρ)2

c j
=

N−1∑
j=0

sλ(M,N, j)(1, . . . ,1)2 ρM− j

c j
= C(c; zM; N,ρ). (6)

3. Consequences and extensions of the main result

In this section, we set out three remarkable corollaries of Theorem 2.1.
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3.1. Linear matrix inequalities

For A ∈PN (K ) and f as in the statement of Theorem 2.1, note that

f [A] = c01N×N + · · · + cN−1 A◦(N−1) + cM A◦M ,

where A◦k := (ak
i j) denotes the kth Hadamard power of A. Understanding when f [A] is positive semidefinite is thus equiv-

alent to obtaining linear inequalities for Hadamard powers. As an immediate consequence of our main result, we provide a 
sharp bound for controlling the Hadamard powers of positive semidefinite matrices using lower order powers.

Corollary 3.1. Fix ρ > 0, integers M ≥ N ≥ 1, and scalars c0, . . . , cN−1 > 0. Then

A◦M ≤ C(c; zM; N,ρ) · (c01N×N + c1 A + · · · + cN−1 A◦(N−1)
)

(7)

for all A ∈PN (D(0, ρ)). Moreover, the constant C(c; zM; N, ρ) is sharp.

We note that Corollary 3.1 is also sharp in the sense that the right-hand side of (7) cannot be replaced by a linear 
combination of fewer than N Hadamard powers of A. This can be shown using matrices of the form A = uuT for a vector u
with distinct real entries.

3.2. Spectrahedra and matrix cubes

Our main result is also connected to the study of spectrahedra [4] and the matrix cube problem [20]. Recall that given 
real symmetric N × N matrices A0, . . . , AM+1, the corresponding matrix cubes are

U[η] :=
{

A0 +
M+1∑
m=1

um Am : um ∈ [−η,η]
}

(η > 0). (8)

The matrix cube problem consists of determining whether U [η] ⊂ PN , and finding the largest η for which this is the case. 
As another consequence of our main result, we obtain an asymptotically sharp bound for the matrix cube problem when 
the matrices A j are Hadamard powers.

Corollary 3.2. Fix ρ > 0, integers M ≥ 0, N ≥ 1, and c0, . . . , cN−1 > 0. Given a matrix A ∈PN (D(0, ρ)), let

A0 := c01N×N + c1 A + · · · + cN−1 A◦(N−1), Am := A◦(N−1+m) (1 ≤ m ≤ M + 1).

Then

η ≤
(

M∑
m=0

C(c; zN+m; N,ρ)

)−1

⇒ U[η] ⊂ PN(C) ⇒ η ≤ C(c; zN+M; N,ρ)−1. (9)

The upper and lower bounds for η are asymptotically equal as N → ∞, i.e.

lim
N→∞C(c; zN+M; N,ρ)−1

M∑
m=0

C(c; zN+m; N,ρ) = 1. (10)

3.3. Extension to other classes of functions

Theorem 2.1 naturally extends to general polynomials.

Corollary 3.3. Fix a bounded K ⊂ C and integers M ≥ N ≥ 1. There exists a universal constant hN,M(K ) > 0, with the following 
property: if the polynomial f (z) = ∑M

k=0 ckzk has real coefficients with

(i) c0, . . . , cN−1 > 0, and
(ii) min{ck : 0 ≤ k ≤ N − 1} ≥ hN,M(K ) · max{|cl| : cl < 0, N ≤ l ≤ M},

then f [−] :PN (K ) →PN (C).

Our main result also extends to analytic functions.
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Theorem 3.4. Fix ρ > 0 and an integer N ≥ 1. Let c := (c0, . . . , cN−1) ∈ (0, ∞)N , and suppose g(z) := ∑∞
M=N cM zM is analytic on 

D(0, ρ) and continuous on D(0, ρ), with real coefficients. Then

t(c01N×N + c1 A + · · · + cN−1 A◦(N−1)) − g[A] ∈ PN(C) (11)

for all A ∈PN (D(0, ρ)) and all t ≥ ∑
M≥N:cM>0 cMC(c; zM ; N, ρ). Moreover, this series is convergent and bounded above by

g(2N−2)
2 (

√
ρ)

2N−1(N − 1)!2
N−1∑
j=0

(
N − 1

j

)2 ρN− j−1

c j
< ∞, (12)

where g2(z) := g+(z2) and g+(z) := ∑
M≥N:cM>0 cM zM .

4. Extremal problems and generalized Rayleigh quotients

Understanding which polynomials preserve positivity can naturally be reformulated as an extremal problem involving 
Rayleigh quotients. The following result is therefore equivalent to Theorem 2.1.

Theorem 4.1. Fix ρ > 0, integers M ≥ N ≥ 1, and positive scalars c0, . . . , cN−1 > 0. Then

inf
u∈K(A)⊥

u∗
(∑N−1

j=0 c j A◦ j
)

u

u∗ A◦M u
≥ C(c; zM; N,ρ)−1,

for all A ∈PN (D(0, ρ)), where K(A) := ker(c01N×N + c1 A + · · ·+ cN−1 A◦(N−1)). Moreover, the bound C(c; zM; N, ρ) is sharp, and 
may be obtained by considering only the set of rank-one matrices P1

N((0, ρ)).

When considering the analogue of Theorem 4.1 for a single matrix, one can first show that K(A) ⊂ ker A◦M and imme-
diately conclude that there exists a constant C(c; zM ; A) such that

u∗
(N−1∑

j=0

c j A◦ j
)

u ≥ C(c; zM; A)−1 · u∗ A◦M u (∀u ∈C
N).

The subtlety in attempting to prove Theorems 2.1 and 4.1 via this approach lies in the fact that the map A �→ C(c; zM; A) is 
not continuous. In fact, it is not continuous at the matrix A = ρ1N×N ∈P1

N (D(0, ρ)).
Complete proofs and more ramifications of these results will appear in [1].
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