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We consider a class of staggered grid schemes for solving the 1D Euler equations in internal 
energy formulation. The proposed schemes are applicable to arbitrary equations of state 
and high-order accurate in both space and time on smooth flows. Adding a discretization 
of the kinetic energy equation, a high-order kinetic energy synchronization procedure is 
introduced, preserving globally total energy and enabling proper shock capturing. Extension 
to nD Cartesian grids is done via C-type staggering and high-order dimensional splitting. 
Numerical results are provided up to 8th-order accuracy.
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article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous considérons une classe de schémas sur maillage décalé pour résoudre les équations 
d’Euler 1D. Les schémas proposés, formulés en énergie interne, sont d’ordre élevé en 
espace comme en temps, utilisables quelle que soit l’équation d’état. En ajoutant une 
discrétisation de l’équation de l’énergie cinétique, une procédure de synchronisation de 
l’énergie cinétique est introduite, préservant globalement l’énergie totale et permettant la 
capture correcte des chocs. Une extension nD sur grille cartésienne décalée de type C avec 
splitting directionnel d’ordre élevé est proposée. Des résultats numériques sont présentés 
jusqu’à l’ordre 8.
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1. Introduction

In the late 1940s, the first shock capturing hydrodynamic scheme by Richtmyer [9] and von Neumann and Richtmyer [14]
was a staggered 1D Lagrange explicit scheme, formulated in internal energy with artificial viscosity and 2nd-order accuracy
in space and time on smooth flows.

In 1961, a key contribution to 1D Lagrange schemes was provided by Trulio and Trigger [12], who identified the lack 
of conservation of total energy with the original scheme and proposed an implicit conservative version, retaining spatial 
staggering of variables, without temporal staggering. See also Popov and Samarskii [8].

In the early 1970s, pioneered by DeBar, several multifluid Eulerian hydrocodes with interface reconstruction on 2D Carte-
sian grids [2,11] relied on the Trulio–Trigger implicit Lagrangian scheme, making use of a Lagrange-remap approach with 
dimensional splitting. Later, a strictly explicit conservative version of the Trulio–Trigger scheme was reported in [15], with 
a description of the so-called BBC scheme on 2D Cartesian grids, in a 1D Lagrange-remap setting with Strang dimensional 
splitting, and a total energy conservation result credited to Noh [7]. See also Youngs [17] for related work on nD staggered 
Cartesian grids.

The aim of this Note is to propose an extension path of such schemes to high-order accuracy.
We choose a finite volume approach, combining high-order Runge–Kutta time integration in the Lagrange phase, high-

order 1D spatial reconstructions and remap, and as presented in [4] with Godunov-type schemes, appropriate dimensional 
splitting sequences.

Section 2 is devoted to the 1D Lagrange-remap staggered grid schemes and associated total energy conservation results, 
keys to proper shock capturing. Section 3 details the dimensional splitting procedure. Section 4 provides numerical results 
on standard test problems up to 8th-order accuracy.

2. High-order 1D staggered grid schemes

First, let us consider the 1D hydrodynamics system (1) closed with an arbitrary EOS such that p = EOS(τ , ε) where 
ρ = 1/τ , u, p, e, ε , ekin = u2/2 denote respectively the mass density, the velocity, the pressure and the total, internal 
and kinetic energies. Let us denote ρ0 the initial mass density. Introducing the change of variable (x, t) → (X, t) satisfying 
ρdx = ρ0dX and using e = ε + ekin, (1) rewrites as (2) in Lagrangian coordinates:⎧⎨⎩

∂tρ + ∂x (ρu) =0
∂t (ρu) + ∂x

(
ρu2 + p

) =0
∂t (ρe) + ∂x (ρue + pu)=0

, (1)

⎧⎪⎪⎨⎪⎪⎩
∂t (ρ0τ ) − ∂X u =0
∂t (ρ0u) + ∂X p =0
∂t (ρ0ε) + p∂X u =0

∂t (ρ0ekin) + u∂X p=0

. (2)

The principle of the Lagrange-remap approach selected here is to integrate in time the Lagrangian system (2), and then 
to perform a conservative remap of the variables on the initial grid. We consider a primal uniform Cartesian grid {xi+ 1

2
}

with �X = xi+ 1
2
− xi− 1

2
and a dual grid {xi} with xi = 1

2 (xi+ 1
2
+ xi− 1

2
). In the following, φ and φ will respectively denote the 

space averaged value of φ and its point-wise value:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
n
i = 1

�X

x
i+ 1

2∫
x

i− 1
2

φ(x, tn)dx and φn
i = φ(xi, tn) for φ ∈ {ρ0,ρ0τ ,ρ0ε}

φ
n
i+ 1

2
= 1

�X

xi+1∫
xi

φ(x, tn)dx and φn
i+ 1

2
= φ(xi+ 1

2
, tn) for φ ∈ {ρ0,ρ0u,ρ0ekin}

.

2.1. Lagrange step

We consider Nth-order explicit schemes with the following notations for Runge–Kutta sequences: αm is the time step 
for the mth sub-cycle, am,l the m, l term of the Butcher table and θl the lth reconstruction coefficient for the last step. The 
artificial viscosity possibly applied for strong shocks [9,14,1] is denoted by q with 
 = p + q.

The system (3) details one Runge–Kutta sub-cycle at time tn+αm and (4) details the final step at time tn+1:
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Table 1
Coefficients for the finite volume computation of point-wise values from cell-average ones and vice versa.

Order C0 C±1 C±2 C±3 C±4 Ĉ0 Ĉ±1 Ĉ±2 Ĉ±3 Ĉ±4

2nd 1 0 0 0 0 1 0 0 0 0

3rd 13
12

−1
24 0 0 0 11

12
1

24 0 0 0

4th and 5th 1067
960

−29
480

3
640 0 0 863

960
77

1440
−17
5760 0 0

6th and 7th 30251
26880

−7621
107520

159
17920

−5
7168 0 215641

241920
6361

107520
−281
53760

367
967680 0

8th and 9th 5851067
5160960

−100027
1290240

31471
2580480

−425
258048

35
294912

41208059
46448640

3629953
58060800

−801973
116121600

49879
58060800

−27859
464486400⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0τ
n+αm
i = ρ0τ

n
i + �t

�X

m−1∑
l=0

am,ldun+αl
i

ρ0un+αm

i+ 1
2

=ρ0un
i+ 1

2
− �t

�X

m−1∑
l=0

am,ld

n+αl

i+ 1
2

ρ0ε
n+αm
i = ρ0ε

n
i − �t

�X

m−1∑
l=0

am,l
δu
n+αl
i

xn+αm

i+ 1
2

= xn
i+ 1

2
+ �t

m−1∑
l=0

am,lu
n+αl

i+ 1
2

pn+αm
i = EOS(τn+αm

i , εn+αm
i )

, (3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0τ
n+1
i = ρ0τ

n
i + �t

�X

s−1∑
l=0

θldun+αl
i

ρ0un+1
i+ 1

2
= ρ0un

i+ 1
2

− �t
�X

s−1∑
l=0

θld

n+αl

i+ 1
2

ρ0ε
n+1
i = ρ0ε

n
i − �t

�X

s−1∑
l=0

θl
δu
n+αl
i

ρ0ekin
n+1
i+ 1

2
=ρ0ekin

n
i+ 1

2
− �t

�X

s−1∑
l=0

θluδ

n+αl

i+ 1
2

xn+1
i+ 1

2
= xn

i+ 1
2

+ �t
s−1∑
l=0

θlu
n+αl

i+ 1
2

pn+1
i = EOS(τn+1

i , εn+1
i )

, (4)

where dφ is the difference between consecutive point-wise values: dφi = φi+ 1
2

− φi− 1
2

and dφi+ 1
2

= φi+1 − φi .

To achieve high-order resolution, it is mandatory to compute the point-wise (resp. average) values from the average (resp. 
point-wise) ones with high-order accuracy. Table 1 gives the usual coefficients for centered and symmetric reconstructions 
using the first equations of (5). Although other reconstructions may be used, centered and symmetric ones are retained here 
and sufficient for uniform Cartesian grids.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φξ(i) =
∑

k

Ckφξ(i)+k

φξ(i) =
∑

k

Ĉkφξ(i)+k

φξ(i) = (ρ0φ)ξ(i)
(ρ0)ξ(i)

δφξ(i) =
∑
k≥0

dk

(
φ

ξ(i)+k+ 1
2

− φ
ξ(i)−k− 1

2

)
with ξ(i) =

{
i on primal grid

i + 1
2 on dual grid

. (5)

The non-conservative terms ψδφ on RHS of (3) and (4) are computed by:

(i) applying the δ operator to point-wise values of φ using the coefficients in Table 2 and the last equation of (5);
(ii) multiplying by the point-wise value of ψ , then reconstructing average values using the right part of Table 1 and the 

second equation of (5).
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Table 2
Coefficients for the δ operator and the interpolation of dual grid positions from primal grid ones.

Order d0 d1 d2 d3 d4 r0 r1 r2 r3 r4

2nd 1 0 0 0 0 1
2 0 0 0 0

3rd 9
8

−1
24 0 0 0 9

16
−1
16 0 0 0

4th and 5th 75
64

−25
384

3
640 0 0 75

128
−25
256

3
256 0 0

6th and 7th 1225
1024

−245
3072

49
5120

−5
7168 0 1225

2048
−245
2048

49
2048

−5
2048 0

8th and 9th 19845
16384

−735
8192

567
40960

−405
229376

35
294912

19845
32768

−2205
16384

567
16384

−405
65536

35
65536

Lemma 2.1. For all Runge–Kutta sequences, all artificial viscosities, all spatial reconstructions, the schemes (3)–(5) formulated in 
internal energy are conservative in mass, momentum and total energy.

Proof. Conservation of mass and momentum is immediate, we only prove the conservation of total energy.

�E =
∑

i

(
ρ0en+1

i − ρ0en
i

)
=

∑
i

(
ρ0ε

n+1
i − ρ0ε

n
i

)
+

∑
i

(
ρ0ekin

n+1
i+ 1

2
− ρ0ekin

n
i+ 1

2

)

= − �t

�X

∑
i

s∑
l=1

θl

(

δu

n+αl
i + uδ


n+αl

i+ 1
2

)

= − �t

�X

∑
i

s∑
l=1

∑
k

∑
k′

θl Ĉkdk′(
n+αl
i+k un+αl

i+k+k′+ 1
2

+ un+αl

i+k+ 1
2



n+αl
i+k+k′+1

− 

n+αl
i+k un+αl

i+k−k′− 1
2

− un+αl

i+k+ 1
2



n+αl
i+k−k′).

Making the change of index i ← i + k′ in the first term and i ← i + k′ + 1 in the second term of the RHS, we get the 
result for wall (with non-trivial definitions of ghost-cell values) or periodic boundary conditions.

�E = − �t

�X

∑
i

s∑
l=1

∑
k

∑
k′

θl Ĉkdk′( 

n+αl
i+k−k′ u

n+αl

i+k+ 1
2

+ un+αl

i+k−k′− 1
2



n+αl
i+k

− 

n+αl
i+k un+αl

i+k−k′− 1
2

− un+αl

i+k+ 1
2



n+αl
i+k−k′) = 0. �

Remark 1. The lemma still holds for implicit schemes based on implicit Runge–Kutta sequences.

Remark 2. An alternative version using δ
 for the momentum equation instead of d
 also preserves momentum.

2.2. Remap step

After the Lagrange step, the dual deformed grid {xn+1
i } is computed by high-order interpolation of the primal deformed 

grid {xn+1
i+ 1

2
} as xi = ∑

k≥0 rk

(
xi+k+ 1

2
+ xi−k− 1

2

)
with rk coefficients in Table 2. All variables (ρφ) for φ ∈ {1, ε} are remapped 

on the primal grid {xi+ 1
2
} and for φ ∈ {1, u, ekin} on the dual grid {xi}.

For the primal grid (essentially identical for the dual one), we have:

ρφ
n+1
i = 1

�X

x
i+ 1

2∫
x

i− 1
2

ρφ(x, tn+1)dx = 1

�X

⎡⎢⎢⎢⎣
xn+1

i− 1
2∫

x
i− 1

2

ρφdx +
xn+1

i+ 1
2∫

xn+1

i− 1
2

ρφdx +
x

i+ 1
2∫

xn+1

i+ 1
2

ρφdx

⎤⎥⎥⎥⎦ ,

written in conservative flux-form:

ρφ
n+1
i = ρ0φ

n+1
i −

⎡⎣ xn+1
i+ 1

2
− xi+ 1

2

�X
(ρφ)∗

i+ 1
2

−
xn+1

i− 1
2

− xi− 1
2

�X
(ρφ)∗

i− 1
2

⎤⎦ . (6)

To compute (ρφ)∗
i+ 1

2
, we use the high-order Lagrange polynomial Pφ

up interpolating point-wise values of Hφ
up(X) =∫ X

−xn+1

up− N + 1
(ρ0φ)(y)dy on the deformed grid, with a stencil of length (N + 1) leading to:
2 2



G. Dakin, H. Jourdren / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 211–217 215
Table 3
Coefficients for the computation of staggered point-wise values from average values and vice versa.

Order Q ± 1
2

Q ± 3
2

Q ± 5
2

Q ± 7
2

Q ± 9
2

Q̂ ± 1
2

Q̂ ± 3
2

Q̂ ± 5
2

Q̂ ± 7
2

Q̂ ± 9
2

2nd 1
2 0 0 0 0 1

2 0 0 0 0

3rd 7
12

−1
12 0 0 0 13

24
−1
24 0 0 0

4th and 5th 37
60

−2
15

1
60 0 0 401

720
−31
480

11
1440 0 0

6th and 7th 533
840

−139
840

29
840

−1
280 0 68323

120960
−353
4480

1879
120960

−191
120960 0

8th and 9th 1627
2520

−473
2520

127
2520

−23
2520

1
1260

2067169
3628800

−40111
453600

581
25920

−28939
7257600

2497
7257600

(ρφ)∗
i+ 1

2
= 1

xn+1
i+ 1

2
− xi+ 1

2

(Pφ
up(xn+1

i+ 1
2
) − Pφ

up(xi+ 1
2
)),where up =

{
i if xn+1

i+ 1
2

> xi+ 1
2

i + 1 otherwise
. (7)

Combined with first-order upwinding, various limiters may possibly be applied on the flux (ρφ)∗
i+ 1

2
.

2.3. Point-wise kinetic energy synchronization step

A high-order accurate synchronization is introduced on point-wise kinetic energies1 according to (8).

(i) Compute the difference �K between point-wise remapped kinetic energy and point-wise reconstructed kinetic energy.
(ii) Distribute �K on the average values of kinetic energy and internal energy on the stencil.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Ki+ 1
2

= ρekin
n+1
i+ 1

2
− 1

2

(
(ρu)n+1

i+ 1
2

)2

ρn+1

i+ 1
2

ρekin
n+1
i+ 1

2
← ρekin

n+1
i+ 1

2
−

∑
k

Ĉk�Ki+k+ 1
2

ρεn+1
i ← ρεn+1

i +
∑

k

Q̂ k+ 1
2
�Ki+k+ 1

2
.

(8)

Lemma 2.2. The kinetic energy synchronization procedure is conservative in total energy.

Proof. For periodic or wall boundary conditions, we have:

�E =
∑

i

(∑
k′

Q̂ k′+ 1
2
�Ki+k′+ 1

2
−

∑
k

Ĉk�Ki+k+ 1
2

)
= 0. �

3. High-order dimensional splitting procedure

The 1D schemes (3)–(8) are now to be used with a dimensional splitting method (DSM) on the nD system{
∂tρ + ∇.(ρ	u) = 0,

∂t(ρ 	�) + ∇·(ρ 	� ⊗ 	u + 	f ) = 0,
with 	� =

( 	u
e

)
and 	f =

(
pIn

p	ut

)
. (9)

For the sake of simplicity, we only detail the 2D case. A C-type staggering is retained: variables are indexed as φi, j for φ ∈
{ρ0, ρ0τ , ρ0ε}, as φi+ 1

2 , j for φ ∈ {ρ0, ρ0u, ρ0ekin,u} and as φi, j+ 1
2

for φ ∈ {ρ0, ρ0 v, ρ0ekin,v}.

As previous 1D schemes are based on a 1D finite volume formulation, it is mandatory to add a transverse interpolation to 
deduce 1D-cell-average values from 2D-cell-average ones. The procedure originates from [4]; it is extended here to staggered 
grids. A sweep along the x-direction proceeds as follows:

(i) interpolate along the y-direction to get 1D-cell-average values of the conservative variables according to (5) if the 
variable is centered along the y-direction or according to (10) if staggered (see Table 3). This way, we only get 1D-cell-
average values along the x-direction, centered along the y-direction.2

1 A reminiscence of DeBar’s procedure first used with the 2nd-order Trulio–Trigger scheme to recover total energy conservation as kinetic energy “dissi-
pates” during momentum remap ([17], [2] pp. 14–17). Here with higher-order accuracy, kinetic energy is updated in both Lagrange and remap steps, and 
point-wisely synchronized (equivalent to DeBar’s procedure in the 2nd-order case).

2 Another high-order accurate variant retains the staggering of transverse variables along the y-direction, requiring the remap of transverse variables on 
a third interpolated 1D grid {xn+1

1 1 } staggered along both x- and y-directions.

i+ 2 , j+ 2
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Table 4
Weights wq applied on the time step for the dimensional splitting methods (DSM).

DSM 
Order

x y x y x y x y x

2nd 0.5 1.0 0.5

3rd 0.26833009 0.91966152 −0.18799161 −0.18799161 0.91966152 0.26833009

4th 0.5 −0.05032120 −0.27516060 0.55032120 0.55032120 0.55032120 −0.27516060 −0.05032120 0.5

5th and 6th 0.39225680 0.78451361 0.51004341 0.23557321 −0.47105338 −1.17767998 0.06875316 1.31518632 0.06875316

−1.17767998 −0.47105338 0.23557321 0.51004341 0.78451361 0.39225680

7th and 8th 0.31451533 0.62903065 0.99919006 1.36934946 0.15238116 −1.06458715 0.29938548 1.66335810 −0.00780559

−1.67896928 −1.61921866 −1.55946804 −0.62383861 0.31179081 0.98539085 1.65899088 0.98539085 0.31179081

−0.62383861 −1.55946804 −1.61921866 −1.67896928 −0.00780559 1.66335810 0.29938548 −1.06458715 0.15238116

1.36934946 0.99919006 0.62903065 0.31451533

(ii) Apply the 1D Lagrange scheme with extra equations for v contributions to momentum and kinetic energy (∂tρ0 v =
∂tρ0ekin,v = 0). Remap fluxes must be computed for all 1D quantities.

(iii) Reconstruct the 2D fluxes from the 1D Lagrange and remap fluxes according to (5) if the 2D variable is centered along 
the y-direction or according to (10) if staggered.

(iv) Apply the reconstructed 2D fluxes on 2D-cell-average values.⎧⎪⎪⎨⎪⎪⎩
φξ(i) =

∑
k

Q k+ 1
2
φ

ξ(i)+k+ 1
2

φξ(i) =
∑

k

Q̂ k+ 1
2
φ

ξ(i)+k+ 1
2

with ξ(i) =
{

i on primal grid
i + 1

2 on dual grid
. (10)

Lemma 3.1. The resulting nD Cartesian grid schemes are conservative in mass, momentum, and total energy.

Proof. With the C-type staggering of variables, the nD schemes verify Lemmas 2.1 and 2.2 direction by direction and so are 
globally conservative in mass, momentum, and total energy for all dimensional splitting. �

Those sweeps are made according to the DSM chosen, which consists in alternatively applying the previous procedure 
along the x- and y-direction with appropriate weighted time steps wq�t (see Table 4 based on [16]).

The high-order DSM have negative time steps, which are easily handled as we focus during the remap, not on the 
material velocity, but rather on the displacement of the Lagrangian grid.

The kinetic energy synchronization procedure is applied at each DSM time step and in each direction after remap, 
without altering the accuracy of the schemes.

4. Numerical results

Computations are performed with the following Runge–Kutta sequences: SSPRK3 [10] for the 2nd and 3rd orders,3 Kutta’s 
scheme for 4th order, the Cash–Karp scheme for the 5th order, Verner’s “robust” sequences [13] for orders greater than 5. 
Neither artificial viscosities/hyperviscosities4 nor limiters are used in the Lagrange and remap steps. The point-wise kinetic 
energy synchronization procedure is applied in all cases.

The Shu–Osher test case [10] is initialized as (11) on a [−5 : 5] domain with a Mach 3 shock wave interacting with a 
sinusoidal density field. Computations till t = 1.8 with CFL = 0.2 are reported in Fig. 1(a) and highlight the robustness and 
high resolution of the 6th- and 9th-order schemes with only 200 cells.

The 2D vortex advection test case is used to assess the accuracy of the schemes under IEEE-754 norm for double 
precision. The initial condition is given by (12). Computations are performed on a [−10 : 10]2 domain till t = 1 with 
CFL = 0.9, γ = 1.4 and β = 5. The L1-errors in both space and time are computed as errL1 = ∑

n �tn ·�x ·�y 
∑

i, j ||ρ�
n
i, j −

ρ�
exact
i, j (tn)||L1 with � = (1, 	u, ε)t and reported in Fig. 1(b) with excellent agreement to the expected orders.5

(ρ0, u0, p0) =
{

( 27
7 , 4

√
35

9 , 31
3 ) if x ∈ [−5 : −4[

(1 + sin(5x)
5 ,0,1) if x ∈ [−4 : 5]

, (11)

3 For stability issues, 2-stage Runge–Kutta sequences are never used.
4 As in [4], when Cook–Cabot-type [1] LES bulk hyperviscosity is activated, numerical accuracy is limited to the 6th order.
5 Except for the 9th-order scheme, as we limit ourselves to a Yoshida 8th-order directional splitting.
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Fig. 1. (a) Shu–Osher test case on 200 cells for the 6th- and 9th-order schemes. (b) Experimental order of convergence (EOC) on the 2D advected vortex 
test case from the 2nd to the 9th order and L1-error in both space and time with respect to the number of cells per direction.⎧⎪⎪⎨⎪⎪⎩

ρ0=
(

1 − (γ −1)β2

8γπ2 e1−r2
) 1

γ −1

	u0= 	1 + β
2π e

1−r2
2 · (−y, x)t

p0= ρ
γ
0

. (12)

5. Conclusion

The high-order accurate schemes proposed in this Note for solving the compressible Euler equations on C-type staggered 
Cartesian grids are flexible concerning (i) Runge–Kutta sequences, (ii) 1D spatial reconstructions, (iii) directional splitting 
methods, (iv) remap procedures, (v) artificial viscosity/hyperviscosity formulations.

Key to total energy conservation, stencils and associated coefficients used for the discretization of non-conservative terms 
in the 1D Lagrange equations for internal and kinetic energies are centered, symmetric and high-order accurate on uniform
Cartesian grids. The proposed point-wise kinetic energy synchronization procedure enables proper shock capturing without 
altering the convergence rate for smooth flows.

Ongoing work includes integration to a hydrodynamic simulation platform [6] for comparison with Godunov-type 
schemes [5,4], especially on problems where high-order accuracy is valuable as long-range aeroacoustic propagation [3], 
vortex dynamics and LES subgrid-scale modeling.
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