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We prove the existence of symmetric periodic solutions to

i ut + �u − (x2 + y2)u − |u|2u = 0.

As a corollary we obtain the existence of dipole solutions.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note, nous prouvons l’existence de solutions périodiques symétriques de 
l’équation

i ut + �u − (x2 + y2)u − |u|2u = 0.

Comme corollaire, nous obtenons des solutions de type « dipôle ».
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

L’équation de Gross–Pitaevskii pour un condensat de Bose–Einstein confiné dans un piège harmonique symétrique est 
donnée par

i ut + �u − (x2 + y2)u − |u|2 u = 0. (1)

Dans ce travail, nous prouvons l’existence de plusieurs branches globales de solutions de (1), dont certaines correspondent 
à des solutions de type « vortex » et d’autres à des solutions de type « dipôle ». Nos principaux résultats sont les suivants.
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Théorème 1.1. Soit m0, n0 ∈ N
∗ . L’équation (1) possède une branche de bifurcation globale dans Fix(Õ (2)) × R (voir (3) ci-dessous) 

de solutions périodiques de la forme

e−iωteim0θ u(r),

à partir de ω = 2(m0 + 2n0 + 1). Ci-dessus, u(r) est une fonction réelle qui s’annule à l’origine.

Théorème 1.2. Soit m0, n0 ∈N avec m0 ≥ 1, et n0 < m0 , alors l’équation (1) possède une branche de bifurcation globale dans Fix(Z2 ×
D̃2m0 ) ×R (voir (4) ci-dessous) de solutions de la forme

e−iωt u(r, θ),

à partir de ω = 2(m0 + 2n0 + 1). Ci-dessus, u(r, θ) est une fonction réelle qui s’annule à l’origine et a les symétries suivantes :

u(r, θ) = u(r,−θ) = −u(r, θ + π/m0).

Le cas (m0, n0) = (1, 0) correspond à des solutions de type « dipôle ».

1. Introduction

The Gross–Pitaevskii equation for a Bose–Einstein condensate (BEC) with symmetric harmonic trap is given by

i ut + �u − (x2 + y2)u − |u|2 u = 0. (2)

Periodic solutions to (2) play an important role in the understanding of the long-term behavior of its solutions. In [12], 
symmetric and asymmetric vortex solutions are obtained and their stability is established. Solutions with two rotating vor-
tices of opposite vorticities are constructed in [14]. In [3], the authors prove the existence of periodic and quasi-periodic 
trajectories of dipoles in anisotropic condensates. The literature of the study of vortex dynamics in Bose–Einstein conden-
sates is vast, both on the mathematical and physical sides; we refer the reader to [5–7,9,11,14] and the references therein 
for a more detailed account.

In this note, we prove the existence of several global branches of solutions to (2), among which there are vortex solutions 
and dipole solutions. Our main results are:

Theorem 1.1. Let m0 ≥ 1 and n0 be fixed non-negative integers. Eq. (2) has a global bifurcation in

Fix(Õ (2)) = {u ∈ H2(R2;C) : u(r, θ) = eim0θ u(r) with u(r) real valued }. (3)

These are periodic solutions to (2) of the form

e−iωteim0θ u(r),

starting from ω = 2(m0 + 2n0 + 1), where u(r) is a real-valued function.

It will be clear from the proof, and standard bifurcation theory, that for small amplitudes a, we have the local expansion

u(r) = avm0,n0(r) +
∑
n∈N

um0,n vm0,n(r) and um0,n(a) = O (a2),

where the vm,n ’s are the eigenfunctions introduced in (5) and the um,n ’s are Fourier coefficients. Thus, the number m0 is 
the degree of the vortex at the origin and n0 is the number of nodes of u(r) in (0, ∞).

Our second theorem is concerned with the existence of multi-pole solutions.

Theorem 1.2. Let m0 ≥ 1 and n0 < m0 be two fixed non-negative integers, then Eq. (2) has a global bifurcation in

Fix(Z2 × D̃2m0) = {u ∈ H2(R2;C) : u(r, θ) = ū(r, θ) = u(r,−θ) = −u(r, θ + π/m0)}. (4)

These are periodic solutions to (2) of the form

e−iωt u(r, θ),

starting from ω = 2(m0 + 2n0 + 1), where u(r, θ) is a real function vanishing at the origin, enjoying the symmetries

u(r, θ) = u(r,−θ) = −u(r, θ + π/m0).
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The requirement n0 < m0 in Theorem 1.2 is a non-resonance condition. The solutions to the previous theorem for 
(m0, n0) = (1, 0) correspond to dipole solutions. This follows locally from the estimate

u(r, θ) = a(eim0θ + e−im0θ )vm0,n0(r) +
∑

m∈{m0,3m0,5m0,...}

∑
n∈N

um,n(eimθ + e−imθ )vm,n(r)

for small amplitude a where um,n = O (a2).
For n0 = 0, since the function vm0,0 is positive for r ∈ (0, ∞) and um,n = O (a2), u(r, θ) is zero only when θ = (k +

1/2)π/m0. Moreover, as u is real, then the lines θ = (k + 1/2)π/m0 correspond to zero-density regions and the phase has 
a discontinuous jump of π at those lines.

A difficulty when trying to obtain the dipole solution, that is for (m0, n0) = (1, 0), is the fact that to carry out a local 
inversion, one has to deal with a linearized operator with a repeated eigenvalue corresponding to (m0, n0) = (1, 0) and 
(−1, 0). We overcome this by restricting our problem to a natural space of symmetries that we identify below. In this space 
our linearized operator only encounters a simple bifurcation which yields the global existence result thanks to a topological 
degree argument; see Theorem 2.1.

2. Reduction to a bifurcation in a subspace of symmetries

The group of symmetries of (2) is a triple torus, corresponding to rotations, phase and time invariances. The analysis 
of the group representations leads to two kinds of isotropy groups, one corresponding to vortex solutions and the other to 
dipole solutions. A fixed point argument on restricted subspaces and Leray–Schauder degree yield the global existence of 
these branches.

In [12], the authors study the case (m0, n0) = (1, 0), which is bifurcation of a vortex of degree one. They also obtain 
second branch stemming from this one and analyze its stability. The bifurcation from the case (m0, n0) = (0, 0) is the 
ground state (see [12]). The proof of existence of dipole-like solutions was left open. In the present work, we use the 
symmetries of the problem, classifying the spaces of irreducible representations, to obtain these as global branches provided 
a non-resonance condition is satisfied.

2.1. Setting of the problem

We rewrite (2) it in polar coordinates:

i ut + �(r,θ)u − r2u − |u|2 u = 0,

where �(r,θ) = ∂2
r + r−1∂r + r−2∂2

θ . Periodic solutions of the form u(t, r, θ) = e−iωt u(r, θ) are zeros of the map

f (u,ω) = −�(r,θ)u + (r2 − ω + |u|2)u.

Let X be the space of functions in H2 for which ‖u‖2
X = ‖u‖2

H2 + ∥∥r2u
∥∥2

L2 is finite. The eigenvalues and eigenfunctions of 
the linear Schrödinger operator

L = −�(r,θ) + r2 : X → L2(R2;C),

are found in Chapter 6, complement D, pp. 727–737, on [1]. The operator L has eigenfunctions vm,n(r) eimθ , which form an 
orthonormal basis of L2(R2; C), and eigenvalues

λm,n = 2(|m| + 2n + 1) for (m,n) ∈ Z×N,

where vm,n(r) is a solution to
(
−(∂2

r + r−1∂r − r−2m2) + r2
)

vm,n(r) = λm,n vm,n(r) (5)

with vm,n(0) = 0 for m �= 0. We have that

u =
∑

(m,n)∈Z×N

um,n vm,n(r)eimθ , Lu =
∑

(m,n)∈Z×N

λm,num,n vm,n(r)eimθ .

Moreover, we know that vm,n(r) eimθ are orthogonal functions, where n is the number of nodes of vm,n(r) in (0, ∞), see 
section 2.9 in [8].

Remark 1. Notice that this is a slightly different orthonormal system than the one in [12], which is more suited for 
anisotropic traps: V (x, y) = αx2 + β y2 with α �= β .
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We have that the norm of u in L2(R2; C) is ‖u‖2
L2 = ∑

(m,n)∈Z×N

∣∣um,n
∣∣2

. Then, the inverse operator K = L−1 :
L2(R2; C) → X is continuous and given by K u = ∑

λ−1
m,num,n vm,n(r) eimθ . Moreover, the operator K : H2(R2; C) → H2(R2; C)

is compact. Observe that H2(R2) is a Banach algebra, then 
∥∥|u|2 u

∥∥
H2 ≤ c ‖u‖3

H2 . We then see that g(u) := K (|u|2 u) =
O(‖u‖3

H2 ) is a nonlinear compact map such that g : H2 → H2. Therefore, we obtain an equivalent formulation for the bifur-
cation as zeros of the map

K f (u,ω) = u − ωK u + g(u) : H2 ×R → H2.

This formulation has the advantage that allows us to appeal to the global Rabinowitz alternative [13] (Theorem 2.1 below).

2.2. Equivariant bifurcation

Let us define the action of the group generated by (ψ, ϕ) ∈ T
2, κ ∈ Z2 and κ̄ ∈ Z2 in L2 as

ρ(ψ,ϕ)u(r, θ) = eiϕu(r, θ + ψ); ρ(κ)u(r, θ) = u(r,−θ); ρ(κ̄)u(r, θ) = ū(r, θ).

Actually, the group generated by these actions is � = O (2) × O (2), and the map K f is �-equivariant.
Given a pair (m0, n0) ∈ Z×N, the operator K has multiple eigenvalues λ−1

m,n = λ−1
m0,n0

for each (m, n) ∈ Z×N such that 
|m| + 2n = |m0| + 2n0. To reduce the multiplicity of the eigenvalue λ−1

m0,n0
, we assume for the moment that there is a 

subgroup G of � such that in the fixed point space,

Fix(G) = {u ∈ H2 : ρ(g)u = u for g ∈ G},

the linear map K has only one eigenvalue λ−1
m0,n0

. Then, we can apply the following theorem using the fact that K f (u, ω) :
Fix(G) ×R → Fix(G) is well defined.

Theorem 2.1. There is a global bifurcating branch K f (u(ω), ω) = 0, starting from ω = λm0,n0 in the space Fix(G) ×R, this branch is 
a continuum that is unbounded or returns to a different bifurcation point (0, ω1).

For a proof, see the simplified approach due to Ize in Theorem 3.4.1 of [10], or a complete exposition in [4].
We note that if u ∈ H2 is a zero of K f , then u = K (ωu −|u|2 u) ∈ H4. Using a bootstrapping argument, we obtain that the 

zeros of K f are solutions to Eq. (2) in C∞ . Next, we find the irreducible representations and the maximal isotropy groups. 
The fixed point spaces of the maximal isotropy groups will have the property that K has a simple eigenvalue corresponding 
to λ−1

m0,n0
. Thus, Theorems 1.1 and 1.2 will follow from Theorem 2.1 applied to G = Õ (2) and G = Z2 × D̃2m0 , respectively.

2.3. Isotropy groups

The action of the group on the components um,n is given by ρ(ϕ, ψ)um,n = eiϕeimψ um,n and ρ(κ)um,n = u−m,n and 
ρ(κ̄)um,n = ū−m,n . Then, the irreducible representations are (z1, z2) = (um,n, u−m,n) ∈ C

2, and the action of � in the repre-
sentation (z1, z2) is

ρ(ϕ,ψ)(z1, z2) = eiϕ(eimψ z1,e−imψ z2); ρ(κ)(z1, z2) = (z2, z1); ρ(κ̄)(z1, z2) = (z̄2, z̄1). (6)

Actually, the irreducible representations (um0,n, u−m0,n) ∈ C
2 are similar for all n ∈ N. The spaces of similar irreducible 

representations are of infinite dimension. We analyze only non-radial bifurcations, that is solutions bifurcating from ω =
λm0,n0 with m0 �= 0; the radial bifurcation with m0 = 0 may be analyzed directly from the operator associated with the 
spectral problem (5).

Let us fix m0 ≥ 1 and (z1, z2) = (um0,n, u−m0,n). Then, possibly after applying κ , we may assume z1 �= 0, unless (z1, z2) =
(0, 0). Moreover, using the action of S1, the point (z1, z2) is in the orbit of (a, r eiθ ). It is known that there are only two 
maximal isotropy groups, one corresponding to (a, 0) and the other one to (a, a), see for instance [2].

From (6), we have that the isotropy group of (a, 0) is generated by (ϕ, −ϕ/m0) and κκ̄ , that is

Õ (2) = 〈(ϕ,−ϕ/m0), κκ̄〉 .

While the isotropy group of (a, a) is generated by (π, π/m0), κ and κ̄ , that is

Z2 × D̃2m0 = 〈κ, (π,π/m0), κ̄〉 .

These two groups are the only maximal isotropy groups of the representation (z1, z2) ∈C
2, and the fixed point spaces have 

real dimension one in C2.
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3. Vortex solutions: Proof of Theorem 1.1

The functions fixed by the group Õ (2) satisfy u(r, θ) = eim0θ u(r) from the element (ϕ, −ϕ/m0), and u(r) = ū(r) from the 
element κκ̄ . Thus, functions in the space Fix(Õ (2)) are of the form

u(r, θ) =
∑
n∈N

um0,n eim0θ vm0,n(r)

with um0,n ∈ R.
Therefore, the map K f (u, ω) has a simple eigenvalue λm0,n0 in the space Fix(Õ (2)) ×R (see (3)). Therefore, from Theo-

rem 2.1, there is a global bifurcation in Fix(Õ (2)) ×R starting at ω = λm0,n0 .

4. Multi-pole-like solutions: Proof of Theorem 1.2

The functions fixed by Z2 × D̃2m0 satisfy u(r, θ) = ū(r, θ) = u(r, −θ). Therefore um,n is real and um,n = u−m,n . Moreover, 
since u(r, θ) = −u(r, θ + π/m0), then um,n = −eiπ(m/m0)um,n . This relation gives um,n = 0 unless eiπ(m/m0) = −1 or m/m0 is 
odd. Thus, functions in the space Fix(Z2 × D̃2m0 ) are of the form

u(r, θ) =
∑

m∈{m0,3m0,5m0,...}

∑
n∈N

um,n(eimθ + e−imθ )vm,n(r),

where um,n is real and m0 ≥ 1. Therefore, the map K has a simple eigenvalue λm0,n0 = 2(m0 + 2n0 + 1) in Fix(Z2 × D̃2m0 ) if 
λlm0,n �= λm0,n0 for n ∈ N and l = 3, 5, 7. This condition is equivalent to lm0 + 2n �= m0 + 2n0 or 2n0 − (l − 1)m0 �= 2n. Then, 
the eigenvalue λm0,n0 is simple if 2n0 < (l − 1)m0 for l = 3, 5, . . . , or n0 < m0.

From Theorem 2.1, the map K f (u, ω) has a global bifurcation in Fix(Z2 × D̃2m0 ) × R as ω crosses the value λm0,n0

(see (4)).
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