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We prove finiteness of the deformation classes of hyperkähler Lagrangian fibrations in any 
fixed dimension with fixed Fujiki constant and discriminant of the Beauville–Bogomolov–
Fujiki lattice. We also prove there are only finitely many deformation classes of hyperkähler 
Lagrangian fibrations with an ample line bundle of a given degree on the general fibre of 
the fibration.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous démontrons la finitude des classes de déformation des fibrations lagrangiennes 
hyperkählériennes, de dimension quelconque, avec constante de Fujiki et discriminant du 
réseau de Beauville–Bogomolov–Fujiki fixes. Nous montrons également qu’il n’y a qu’un 
nombre fini de classes de déformation des fibrations lagrangiennes hyperkählériennes avec 
un fibré en droite ample de degré donné sur la fibre générale de la fibration.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For a hyperkähler manifold M , the Fujiki constant and the discriminant of the Beauville–Bogomolov–Fujiki lattice are 
topological invariants. It is very natural to fix them and ask for finiteness of hyperkähler manifolds with these invariants. 
In this paper we establish finiteness of Lagrangian fibrations of hyperkähler manifolds with fixed topological invariants as 
above.

Theorem 1.1. There are at most finitely many deformation classes of Lagrangian fibrations π : M → CPn with a fixed Fujiki constant 
c and a given discriminant of the Beauville–Bogomolov–Fujiki lattice (�, q).

Francois Charles has the following boundedness result for families of hyperkähler varieties up to deformation. He drops 
the assumption that L is ample in Kollár–Matsusaka’s theorem applied for hyperkähler manifolds and replaces it with the 
assumption that q(L) > 0.
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Theorem 1.2. (See Charles [4].) Let n and r be two positive integers. Then there exists a scheme S of finite type over C, and a projective 
morphism M−→ S such that if M is a complex hyperkähler variety of dimension 2n and L is a line bundle on M with c1(L)2n = r
and q(L) > 0, where q is the Beauville–Bogomolov form, then there exists a complex point s of S such that Ms is birational to M.

In our case, there is a natural line bundle L associated with the Lagrangian fibration. Using Fujiki’s formula, it is a 
straightforward observation that q(L) = 0, while F. Charles deals with the case when q(L) > 0 (in which case M is projective 
by a result of D. Huybrechts: Theorem 3.11 in [8]).

In the proof of our main theorems we use F. Charles’s finiteness result applied to an ample line bundle with minimal 
positive square of the Beauville–Bogomolov–Fujiki form. Since we are interested in a finiteness result up to deformation 
equivalence, one can obtain an ample line bundle after deforming a given Lagrangian fibration to a projective one. We also 
use lattice theory estimates applied to the Beauville–Bogomolov–Fujiki form.

In [13], Sawon proved a finiteness theorem for Lagrangian fibrations with a lot of natural assumptions on the fibration, 
such as existence of a section, fixed polarization type of a very ample line bundle, semi-simple degenerations as the general 
singular fibres, and a maximal variation of the fibres. We give the precise statement of Sawon’s theorem in Section 2. Using 
the techniques in our proofs, one can also drop most of the other conditions in Sawon’s theorem. We prove the following 
generalization.

Theorem 1.3. Consider a Lagrangian fibration π : M −→CPn such that there is a line bundle P on M with q(P ) > 0 and with a 
given P -degree d on the general fibre F of π , i.e., Pn · F = d. Then there are at most finitely many deformation classes of hyperkähler 
manifolds M as above, i.e., they form a bounded family.

For completeness of the exposition, we also mention Huybrechts’ classical finiteness results.

Theorem 1.4. (See Huybrechts [10].) If the second integral cohomology H2(Z) and the homogeneous polynomial of degree 2n − 2
on H2(Z) defined by the first Pontrjagin class are given, then there exist at most finitely many diffeomorphism types of compact 
hyperkähler manifolds of real dimension 4n realizing this structure.

Theorem 1.5. (See Huybrechts [10].) Let M be a fixed compact manifold. Then there exist at most finitely many different deformation 
types of irreducible holomorphic symplectic complex structures on M.

Using Theorem 1.5, the author and Misha Verbitsky established the following finiteness results in [11].

Theorem 1.6. (See Kamenova–Verbitsky [11].) Let M be a fixed compact manifold. Then there are only finitely many deformation types 
of hyperkähler Lagrangian fibrations (M, I) −→CPn, for all complex structures I on M.

In the main theorem of this paper, we prove the finiteness of deformation classes of the total space M of the Lagrangian 
fibration M −→CPn with fixed dimension, Fujiki constant and discriminant of the Beauville–Bogomolov–Fujiki lattice. As a 
corollary of Theorem 1.6, one also obtains the finiteness of the deformation classes of the Lagrangian fibration M −→CPn .

2. Hyperkähler geometry: preliminary results

Definition 2.1. A hyperkähler manifold is a compact Kähler holomorphic symplectic manifold.

Definition 2.2. A hyperkähler manifold M is called simple if H1(M, C) = 0 and H2,0(M) = C.

Remark 2.3. From now on, we assume that all hyperkähler manifolds are simple.

Remark 2.4. The following two notions are equivalent: a holomorphic symplectic Kähler manifold and a manifold with a 
hyperkähler structure, that is, a triple of complex structures satisfying the quaternionic relations and parallel with respect to 
the Levi-Civita connection. In the compact case, the equivalence between these two notions is provided by Yau’s solution to 
Calabi’s conjecture [2]. In this paper, we assume compactness and we use the complex algebraic point of view.

Definition 2.5. Let M be a compact complex manifold and Diff0(M) the connected component of the identity of its diffeo-
morphism group. Denote by Comp the space of complex structures on M , equipped with a structure of Fréchet manifold. 
The Teichmüller space of M is the quotient Teich := Comp/ Diff0(M). For a hyperkähler manifold M , the Teichmüller space is 
finite-dimensional [3]. Let Diff+(M) be the group of orientable diffeomorphisms of a complex manifold M . The mapping class 
group � := Diff+(M)/ Diff0(M) acts naturally on Teich. For I ∈ Teich, let �I be the subgroup of � which fixes the connected 
component of complex structure I . The monodromy group is the image of �I in Aut H2(M, Z).
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Theorem 2.6. (See Fujiki [6].) Let η ∈ H2(M), and dim M = 2n, where M is hyperkähler. Then 
∫

M η2n = c · q(η, η)n, for some integral 
quadratic form q on H2(M), where c > 0 is a constant depending on the topological type of M. The constant c in Fujiki’s formula is 
called the Fujiki constant. �
Definition 2.7. This form is called the Beauville–Bogomolov–Fujiki form.

Remark 2.8. The form q has signature (3, b2 − 3). It is negative definite on primitive forms, and positive definite on the 
space 〈�, �, ω〉 where � is the holomorphic symplectic form and ω is a Kähler form (see, e.g., [14], Theorem 6.1, or [9], 
Corollary 23.9).

Definition 2.9. Let [η] ∈ H1,1(M) be a real (1,1)-class on a hyperkähler manifold M . We say that [η] is parabolic if 
q([η], [η]) = 0. A line bundle L is called parabolic if the class c1(L) is parabolic.

Remark 2.10. If L is a parabolic class and P ∈ H2(M) is any class, then after we substitute η = P + tL into Fujiki’s formula 
in Theorem 2.6, and compare the coefficients of tn on both sides, we obtain 

(2n
n

)
Pn Ln = c2nq(P , L)n .

Theorem 2.11. (See Matsushita [12].) Let π : M → B be a surjective holomorphic map from a hyperkähler manifold M to a base B, 
with 0 < dim B < dim M. Then dim B = 1/2 dim M, and the fibres of π are holomorphic Lagrangian (this means that the symplectic 
form vanishes on the fibres).

Definition 2.12. Such a map is called a holomorphic Lagrangian fibration.

Definition 2.13. A line bundle L is called semiample if LN is generated by its holomorphic sections that have no common 
zeros.

Remark 2.14. From semiampleness, it trivially follows that L is nef. Indeed, let π : M → PH0(LN )∗ be the standard map. 
Since the sections of L have no common zeros, π is holomorphic. Then L ∼= π∗O(1), and the curvature of L is the pullback 
of a Kähler form on CPn . However, a nef bundle is not necessarily semiample (see e.g. [5, Example 1.7]).

Remark 2.15. Let π : M → B be a holomorphic Lagrangian fibration, and ωB a Kähler class on B . Then η := π∗ωB is 
semiample and parabolic. The converse is also true, by Matsushita’s theorem: if L is semiample and parabolic, L induces a 
Lagrangian fibration.

Our main results in this paper rely on the following theorem.

Theorem 2.16. (See Charles [4].) Let n and r be two positive integers. Then there exists a scheme S of finite type over C, and a projective 
morphism M−→ S such that if M is a complex hyperkähler variety of dimension 2n and L is a line bundle on M with c1(L)2n = r
and q(L) > 0, where q is the Beauville–Bogomolov form, then there exists a complex point s of S such that Ms is birational to M.

We would also like to mention the following theorem in the recent literature.

Theorem 2.17. (See Sawon [13].) Fix positive integers n and d1, . . . , dn, with d1|d2| · · · |dn. Consider Lagrangian fibrations π : M →
CPn that satisfy:

(1) π : M →CPn admits a global section,
(2) there is a very ample line bundle on M which gives a polarization of type (d1, . . . , dn) when restricted to a generic smooth 

fibre Mt ,
(3) over a generic point t of the discriminant locus the fibre Mt is a rank-one semi-stable degeneration of abelian varieties,
(4) a neighbourhood U of a generic point t ∈CPn describes a maximal variation of abelian varieties.
Then there are finitely many such Lagrangian fibrations up to deformation.

Remark 2.18. If there is a section σ : CPn −→ M , this means that σ(CPn) would be a Lagrangian subvariety in M . Finding 
Lagrangian CPn ’s in a hyperkähler manifold is itself a very interesting task (for example, see [7]). Moreover, the Lagrangian 
σ(CPn) would have to intersect the general fibre of π in one point.

3. Main results

Consider a lattice �, i.e., a free Z-module of finite rank equipped with a non-degenerate symmetric bilinear from q with 
values in Z. If {ei} is a basis of �, the discriminant of � is defined as discr(�) = det(ei · e j).
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Lemma 3.1. Let (�, q) be an indefinite lattice and v ∈ � be an isotropic non-zero primitive vector. Then there exists a positive vector 
w ∈ � such that 0 < q(w, v) � |discr(�)| and 0 < q(w, w) � 2|discr(�)|.

Proof. Let w0 be a vector with minimal positive intersection q(w0, v). Then by Lemma 3.7. in [11], q(w0, v) divides N =
|discr(�)|. Therefore, 0 < q(w0, v) � N . Let α be the smallest integer such that q(w0 + αv, w0 + αv) > 0. Since q(v, v) = 0, 
the square of the vector w = w0 +αv is: q(w0 +αv, w0 +αv) = q(w0, w0) + 2αq(w0, v). Then w is a positive vector with 
0 < q(w, v) = q(w0, v) � N . Notice that automatically 0 < q(w, w) = q(w0 + αv, w0 + αv) = q(w0, w0) + 2αq(w0, v) �
2N = 2|discr(�)|. �

We recall the following result from a paper of the author’s together with Misha Verbitsky, Theorem 3.6 in [11].

Theorem 3.2. Consider the action of the monodromy group �I on H2(M, Z), and let S ⊂ H2(M, Z) be the set of all classes which are 
parabolic and primitive. Then there are only finitely many orbits of �I on S.

Our main result is the following finiteness theorem.

Theorem 3.3. There are at most finitely many deformation classes of Lagrangian fibrations π : M → CPn with a fixed Fujiki constant 
c and a given discriminant of the Beauville–Bogomolov–Fujiki lattice (�, q).

Proof. As in Remark 2.15, Lagrangian fibrations correspond to parabolic semiample classes. Now consider S ⊂ H2(M, Z)

defined above, the set of all classes that are parabolic and primitive, which is possibly larger than the set of parabolic 
semiample classes. By Theorem 3.2, there are only finitely many orbits of the monodromy group �I on S .

Let L be a nef parabolic class (q(L) = 0) coming from the Lagrangian fibration. Deform the Lagrangian fibration preserving 
the fibration structure, i.e. preserving the class of L to a projective hyperkähler Lagrangian fibration. Since we are interested 
in finiteness results up to deformation, we are going to work in the projective setting. By Huybrechts result (Theorem 3.11 
in [8]), there exists a line bundle with positive square. Apply Lemma 3.1 for (�, q) = (H2(X, Z), q) and v = L. There ex-
ists a positive vector w with 0 < q(w, v) � |discr(�)| = N . We could choose w to be a vector with the smallest positive 
square q(w, w) > 0. From the lemma we see that 0 < q(w, w) � 2|discr(�)|, which is bounded since we consider a fixed 
discriminant.

Now we can apply F. Charles’s Theorem 2.16 to the case when the first Chern class is w , in which case, by Fujiki’s 
formula, 0 < r = w2n = c · q(w, w)n � c · (2|discr(�)|)n is bounded. For each r in this interval we obtain only finitely many 
deformation classes of the total space M . �

Since the families of hyperkähler manifolds as above form a bounded family, there are only finitely many choices of 
the second Betti number, which plays an important role in studying the geometry of hyperkähler manifolds. We obtain the 
following.

Corollary 3.4. In the assumptions of Theorem 3.3, the second Betti number b2(M) is bounded.

Using similar methods as above together with F. Charles’s Theorem 2.16, we generalize Sawon’s Theorem 2.17 by dropping 
most of the assumptions.

Theorem 3.5. Consider a Lagrangian fibration π : M −→CPn such that there is a line bundle P on M with q(P ) > 0 and with a 
given P -degree d on the general fibre F of π , i.e., Pn · F = d. Then there are at most finitely many deformation classes of hyperkähler 
manifolds M as above, i.e., they form a bounded family.

Proof. Let L be a nef parabolic class (q(L) = 0) coming from the Lagrangian fibration (e.g., as the pullback of a hyperplane 
class on CPn). The fundamental class [F ] of the general fibre of π is Ln . By assumption, Pn · Ln = d is fixed. Define v = L/m, 
where m ∈ Z>0 is the divisibility of L, and therefore v is a primitive class. Since P is in the interior of the positive cone C
and v is on the boundary of C , it follows that q(P , v) > 0 (Corollary 7.2 in [1]). Now we shall follow the proof of Lemma 3.1. 
Let k be the smallest integer such that q(P + kv) > 0. Then q(P + kv) � 2q(P , v) and

(P + kv)2n = c · q(P + kv)n � c2nq(P , v)n =
(

2n

n

)
Pn · vn =

(
2n

n

)
Pn · Ln

mn
=

(
2n

n

)
d

mn
�

(
2n

n

)
d.

Here we applied Fujiki’s formula twice (as in Theorem 2.6 and Remark 2.10), where c is the Fujiki constant. We apply 
F. Charles’s Theorem 2.16 to obtain a bounded family of such M , which implies finiteness of deformations of M . �
Remark 3.6. In Theorem 3.3 and Theorem 3.5, we prove the finiteness of deformation classes of the total space M of the 
Lagrangian fibration. However, in Theorem 1.6 the author together with Misha Verbitsky prove that for a fixed compact 
manifold M there are only finitely many deformation types of hyperkähler Lagrangian fibrations with total space M .
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