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We show that there exists a Banach space E such that:

• the Banach algebra B(E) of bounded, linear operators on E has a singular extension 
that splits algebraically, but it does not split strongly;

• the homological bidimension of B(E) is at least two.

The first of these conclusions solves a natural problem left open by Bade, Dales, and Lykova 
(1999) [1], while the second answers a question of Helemskii. The Banach space E that we 
use was originally introduced by Read (1989) [9].
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r é s u m é

Nous démontrons qu’il existe un espace de Banach tel que :

• l’algèbre de Banach B(E) des opérateurs linéaires bornés sur E a une extension 
singulière, qui scinde algébriquement, mais qui ne scinde pas fortement ;

• la bidimension homologique de B(E) est au moins deux.

La première de ces conclusions complète les résultats de Bade, Dales et Lykova (1999) [1], 
tandis que la seconde répond à une question de Helemskii. L’espace de Banach E a été 
introduit initialement par Read (1989) [9].
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1. Introduction and statement of results

By an extension of a Banach algebra B, we understand a short-exact sequence of the form

{0} kerϕ A
ϕ

B {0}, (1.1)

where A is a Banach algebra and ϕ: A → B is a continuous, surjective algebra homomorphism. The extension splits 
algebraically (respectively, splits strongly) if there is an algebra homomorphism (respectively, a continuous algebra homomor-
phism) ρ: B → A which is a right inverse of ϕ , in the sense that ϕ ◦ ρ is the identity map on B. We say that (1.1) is 
admissible if ϕ has a right inverse which is bounded and linear, or, equivalently, if kerϕ is complemented in A as a Ba-
nach space. Every extension which splits strongly is obviously admissible. The extension (1.1) is singular if kerϕ has trivial 
multiplication, in the sense that ab = 0 whenever a, b ∈ kerϕ .

Bade, Dales, and Lykova [1] carried out a comprehensive study of extensions of Banach algebras, focusing in particular 
on the following question:

For which (classes of) Banach algebras B is it true that every extension of the form (1.1) which splits algebraically also splits 
strongly?

This question can be viewed as a variation on the theme of automatic continuity. Of course, its answer is positive whenever 
the Banach algebra B has the property that every algebra homomorphism from B into a Banach algebra is continuous. 
A classical theorem of Johnson [5] states that the Banach algebra B = B(E) of all bounded operators on a Banach space E
has this property whenever E is isomorphic to its Cartesian square E ⊕ E .

Johnson’s result, however, does not extend to all Banach spaces because Read [9] has constructed a Banach space ER such 
that there exists a discontinuous derivation (and hence a discontinuous algebra homomorphism) from B(ER). Dales, Loy, 
and Willis [2] have subsequently given an example of a Banach space EDLW such that all derivations from B(EDLW) are con-
tinuous, but under the assumption of the Continuum Hypothesis, B(EDLW) admits a discontinuous algebra homomorphism 
into a Banach algebra.

These results still leave open the above question of Bade, Dales, and Lykova in the case of B(E) for a general Banach 
space E: is it true that every extension of B(E) that splits algebraically also splits strongly? Our first result answers this 
question in the negative.

Theorem 1.1. There exists a continuous, surjective algebra homomorphism ϕ from a unital Banach algebra A onto B(ER), where ER
denotes the above-mentioned Banach space of Read, such that the extension

{0} kerϕ A
ϕ

B(ER) {0}
is singular and splits algebraically, but it is not admissible, and so it does not split strongly.

We do not know whether Read’s Banach space ER is essential for this result. Due to the dearth of examples of Banach 
spaces E for which B(E) admits a discontinuous homomorphism into a Banach algebra, E = ER was the most obvious place 
to start our investigations, and it led to the answer which we were looking for.

Before we can state our second result, we require some more terminology. Let n ∈ N0. A Banach algebra B has homo-
logical bidimension at least n if there exists a Banach B-bimodule X such that the n-th continuous Hochschild cohomology 
group H n(B, X) of B with coefficients in X is non-zero. This notion is the topological counterpart of a long established 
notion in pure algebra. It was introduced by Helemskii, who, together with his students, has studied it for many classes of 
Banach algebras; see [3] for an overview.

A Banach algebra B which has homological bidimension zero (so that H 1(B, X) = {0} for every Banach B-bimodule X) 
is contractible. It is conjectured that a Banach algebra is contractible (if and) only if it is finite-dimensional and semisimple.

If true, this conjecture would imply that the Banach algebra B(E) has homological bidimension at least one for every 
infinite-dimensional Banach space E; see [7, Proposition 5.1] for a strong partial result in this direction. It appears to be 
unknown if a Banach algebra of the form B(E) for a (necessarily infinite-dimensional) Banach space E can have homological 
bidimension at least two, a problem that goes back to Helemskii’s seminar at Moscow State University. In the case where E
is a Hilbert space, this problem is stated explicitly as [4, Problem 21]; see also [1, p. 27]. We shall show that the homological 
bidimension of B(E) can be two or greater, again using the above-mentioned Banach space ER of Read.

Theorem 1.2. There exist a one-dimensional Banach B(ER)-bimodule X and a bounded, linear injection from the Banach alge-
bra B(�2(N)) of bounded operators on the Hilbert space �2(N) into the second continuous Hochschild cohomology group of B(ER)

with coefficients in X. Hence B(ER) has homological bidimension at least two.
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2. Proofs of Theorems 1.1 and 1.2

The proofs of Theorems 1.1 and 1.2 both rely on a strengthening of the main technical result in Read’s paper, as it is stated 
in [9, Section 4]. This strengthening involves two further pieces of notation. First, we denote by W (ER) the ideal of weakly 
compact operators on the Banach space ER. Second, we endow the Hilbert space �2(N) with the trivial multiplication and 
write �2(N)∼ for its unitization; that is, �2(N)∼ = �2(N) ⊕K1 as a vector space (where K denotes the scalar field, either R

or C, and 1 is the formal identity that we adjoin), while the product and the norm on �2(N)∼ are given by

(x + λ1)(y + μ1) = λy + μx + λμ1 and ‖x + λ1‖ = ‖x‖ + |λ| (x, y ∈ �2(N), λ,μ ∈K).

Theorem 2.1. There exists a continuous, surjective algebra homomorphism ψ from B(ER) onto �2(N)∼ with kerψ = W (ER) such 
that the extension

{0} W (ER) B(ER)
ψ

�2(N)∼ {0}
splits strongly.

The proof of this result relies on a careful analysis of Read’s construction; full details will appear in [8].
In order to prove Theorem 1.1, we require another tool, namely the pullback of a diagram of the form

A α C B,
β

(2.1)

where A , B, and C are Banach algebras, and α: A → C and β: B → C are continuous algebra homomorphisms. We can 
define the pullback of this diagram explicitly by the formula

D = {(a,b) ∈ A ⊕ B : α(a) = β(b)}, (2.2)

where A ⊕B denotes the direct sum of the Banach algebras A and B. Being a closed subalgebra of A ⊕B, D is a Banach 
algebra in its own right. Let

γ : (a,b) �→ a, D → A , and δ: (a,b) �→ b, D → B, (2.3)

be the restrictions to D of the coordinate projections. Then α ◦ γ = β ◦ δ, and it can be shown that D , together with the 
continuous algebra homomorphisms γ and δ, has the following universal property, so that they form a pullback of (2.1) in 
the categorical sense: for every Banach algebra E and each pair ξ : E → A and η: E → B of continuous algebra homomor-
phisms satisfying α ◦ ξ = β ◦ η, there is a unique continuous algebra homomorphism θ : E → D such that the diagram

E
ξ

θ

η

D γ

δ

A

α

B
β

C

is commutative.
We now come to our key result, which establishes a connection between extensions and pullbacks.

Proposition 2.2. Let A , B, and C be Banach algebras such that there are extensions

{0} kerα A α C {0} (2.4)

and

{0} kerβ B
β

C {0}, (2.5)

and define D , γ , and δ by (2.2) and (2.3), above. Then δ is surjective, and the following statements concerning the extension

{0} ker δ D δ B {0} (2.6)

hold true:
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(i) (2.6) is singular if and only if (2.4) is singular.
(ii) Suppose that (2.5) splits strongly (respectively, splits algebraically, is admissible). Then (2.6) splits strongly (respectively, splits 

algebraically, is admissible) if and only if (2.4) splits strongly (respectively, splits algebraically, is admissible).

Proof. The surjectivity of α implies that δ is surjective, so that (2.6) is indeed an extension.
(i). The restriction of γ to ker δ is an isomorphism onto kerα, and the conclusion follows.
(ii). Let ρ: C → B be a continuous algebra homomorphism which is a right inverse of β .
⇒. Suppose that τ : B → D is a continuous algebra homomorphism which is a right inverse of δ. Then a direct calcula-

tion shows that the continuous algebra homomorphism γ ◦ τ ◦ ρ is a right inverse of α, so that (2.4) splits strongly.
⇐. Suppose that σ : C → A is a continuous algebra homomorphism which is a right inverse of α. Then, setting τ (b) =

(σ (β(b)), b) for each b ∈ B, we obtain a continuous algebra homomorphism τ :B → D . The definition of δ implies that τ
is a right inverse of δ, and hence (2.6) splits strongly.

The proof just given applies equally to establish the other two cases. �
Proof of Theorem 1.1. Our aim is to apply Proposition 2.2 with B = B(ER), C = �2(N)∼ , and β = ψ . Theorem 2.1 shows 
that, for these choices, we have an extension of the form (2.5) which splits strongly.

Let q: �1(N) → �2(N) be a bounded, linear surjection. Then ker q is not complemented in �1(N) because no (comple-
mented) subspace of �1(N) is isomorphic to �2(N). Equip �1(N) with the trivial product, let A = �1(N) ⊕ K1 be its 
unitization (defined analogously to the unitization of �2(N), above), and define α: A → C by α(x + λ1) = q(x) + λ1 for 
x ∈ �1(N) and λ ∈ K. Then α is a continuous, surjective algebra homomorphism with kernel ker q, which is uncomple-
mented in �1(N) and hence in A , so that we have a singular, non-admissible extension of the form (2.4).

Being surjective, q has a linear right inverse ρ: �2(N) → �1(N), which is multiplicative because both �1(N) and �2(N)

have the trivial product. Extend ρ to a linear map between the unitizations C and A by making it unital. Then it is an 
algebra homomorphism which is a right inverse of α, so that the extension (2.4) splits algebraically. Hence Proposition 2.2
produces a singular extension (2.6) of B = B(ER) which splits algebraically, but is not admissible.

It remains to verify that the Banach algebra D in this extension is unital. This, however, follows immediately from 
the definition (2.2) because the algebras A , B, and C in the extensions (2.4) and (2.5) are unital, and hence so are the 
homomorphisms α and β . �

Before we proceed to prove Theorem 1.2, let us recall the formal definition of the second continuous Hochschild cohomol-
ogy group of a Banach algebra B with coefficients in a Banach B-bimodule X . A 2-cocycle is a bilinear map ϒ: B ×B → X
that satisfies

a · ϒ(b, c) − ϒ(ab, c) + ϒ(a,bc) − ϒ(a,b) · c = 0 (a,b, c ∈ B).

The set Z 2(B, X) of continuous 2-cocycles forms a closed subspace of the Banach space of continuous, bilinear maps 
from B × B into X . Each bounded, linear map �: B → X induces a continuous 2-cocycle by the definition

δ1�: (a,b) �→ a · (�b) − �(ab) + (�a) · b, B × B → X . (2.7)

The 2-cocycles of this form are called 2-coboundaries; they form a (not necessarily closed) subspace N 2(B, X)

of Z 2(B, X), and so the quotient

H 2(B, X) := Z 2(B, X)/N 2(B, X)

is a seminormed vector space, which is the second continuous Hochschild cohomology group of B with coefficients in X .

Proof of Theorem 1.2. By Theorem 2.1, there are continuous algebra homomorphisms

ψ: B(ER) → �2(N)∼ and ρ:�2(N)∼ → B(ER)

such that ρ is a right inverse of ψ . The definition of the unitization implies that we can find maps ψ0: B(ER) → �2(N) and 
θ : B(ER) →K such that

ψ(T ) = ψ0(T ) + θ(T )1 (T ∈ B(ER)).

We see that θ is a continuous algebra homomorphism, and X = K is a one-dimensional Banach B(ER)-bimodule with 
respect to the operations

T · λ = θ(T )λ and λ · T = θ(T )λ (T ∈ B(ER), λ ∈ X). (2.8)

Moreover, ψ0 is bounded and linear. Consequently, for each U ∈ B(�2(N)), we can define a continuous, bilinear map 
ϒU : B(ER) × B(ER) → X by

ϒU (S, T ) = 〈U (ψ0(S)),ψ0(T )〉 (S, T ∈ B(ER)), (2.9)
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where 〈·, ·〉 denotes the usual Banach-space duality bracket on �2(N), that is, 〈x, y〉 = ∑∞
n=1 xn yn for x = (xn) and y = (yn)

in �2(N). The map ψ0 is not multiplicative; more precisely, since �2(N) has trivial multiplication, we have

ψ0(ST ) = θ(S)ψ0(T ) + θ(T )ψ0(S) (S, T ∈ B(ER)).

A straightforward verification based on this identity shows that ϒU is a 2-cocycle. Hence we have a map

ϒ: U �→ ϒU , B(�2(N)) → Z 2(B(ER), X),

which is clearly bounded and linear.
Suppose that ϒU is a 2-coboundary for some U ∈ B(�2(N)), so that ϒU = δ1� for some bounded, linear map 

�: B(ER) → X . Since ρ is a right inverse of ψ , we see that ψ0(ρ(x)) = x and θ(ρ(x)) = 0 for each x ∈ �2(N). Combin-
ing these identities with the definitions (2.7)–(2.9), we obtain

〈U x, y〉 = (δ1�)(ρ(x),ρ(y)) = θ(ρ(x))�(ρ(y)) − �(ρ(x)ρ(y)) + θ(ρ(y))�(ρ(x)) = 0

for each x, y ∈ �2(N) because ρ(x)ρ(y) = ρ(xy) = 0. This shows that U = 0, so that 0 is the only 2-coboundary in the image 
of ϒ . Hence the composition of ϒ with the quotient map from Z 2(B(ER), X) onto H 2(B(ER), X) is a bounded, linear 
injection from B(�2(N)) into H 2(B(ER), X), and the result follows. �
Remark 2.3. There is an underlying connection between Theorems 1.1 and 1.2. To explain it, consider two extensions (2.4)
and (2.5) of a Banach algebra C , where the former extension is singular and admissible, but does not split strongly, while 
the latter splits strongly. Then, by Proposition 2.2, we obtain a singular, admissible extension (2.6) of the Banach algebra B, 
and this extension does not split strongly. Hence a classical result of Johnson (see [6, Theorem 2.1], or [3, Corollary I.1.11]
for an exposition) implies that ker δ is a Banach B-bimodule and H 2(B, ker δ) is non-zero, so that B has homological 
bidimension at least two.

To apply this result to B = B(ER), we take C = �2(N)∼ and β = ψ as in the proof of Theorem 1.1, so that we have an 
extension of the form (2.5) that splits strongly by Theorem 2.1. Choose U ∈ B(�2(N)) with ‖U‖ � 1, and turn the vector 
space K ⊕ �2(N) into a Banach algebra by endowing it with the product and the norm

(λ, x)(μ, y) = (〈U x, y〉,0) and ‖(λ, x)‖ = |λ| + ‖x‖ (x, y ∈ �2(N), λ,μ ∈K).

Denote by A the unitization of this Banach algebra, and let α: A → C be the natural unital projection. Then α is a 
continuous, surjective algebra homomorphism, and we have a singular, admissible extension of the form (2.4), which can 
be shown to split algebraically if and only if it splits strongly, if and only if U = 0. Thus, choosing U non-zero, we conclude 
that B(ER) has homological bidimension at least two.

A similar argument shows that B(EDLW) has homological bidimension at least two, where EDLW denotes the Banach 
space of Dales, Loy, and Willis studied in [2]. To see this, take B = B(EDLW) and C = �∞(Z), and apply [1, Theorem 3.11(i)]
to obtain a singular, admissible extension of �∞(Z) which does not split strongly.
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