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We construct a generalized cluster structure compatible with the Poisson bracket on the 
Drinfeld double of the standard Poisson–Lie group GLn and derive from it a generalized 
cluster structure in GLn compatible with the push-forward of the dual Poisson–Lie bracket.
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r é s u m é

On construit des structures d’algèbres amassées généralisées compatibles avec le crochet 
de Poisson sur le double de Drinfeld du group GLn muni de sa structure de Poisson–Lie 
usuelle. On en déduit une structure d’algèbre amassée généralisée sur GLn compatible avec 
l’image directe du crochet de Poisson dual.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The connection between cluster algebras and Poisson structures is documented in [6]. Among the most important ex-
amples in which this connection has been utilized are coordinate rings of double Bruhat cells in semisimple Lie groups 
equipped with (the restriction of) the standard Poisson–Lie structure. In [6], we applied our technique of constructing a 
cluster structure compatible with a given Poisson structure in this situation and recovered the cluster structure built in [2]. 
The standard Poisson–Lie structure is a particular case of Poisson–Lie structures corresponding to quasi-triangular Lie bial-
gebras. Such structures are associated with solutions to the classical Yang–Baxter equation. Their complete classification 
was obtained by Belavin and Drinfeld in [1] in terms of certain combinatorial data defined in terms of the corresponding 
root system. In [7] we conjectured that any such solution gives rise to a compatible cluster structure on the Lie group and 
provided several examples supporting this conjecture. Recently [8,9], we constructed the cluster structure corresponding to 
the Cremmer–Gervais Poisson structure in GLn for any n. As we established in [9], the construction of cluster structures 
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on a simple Poisson–Lie group G relies on properties of the Drinfeld double D(G). Moreover, in the Cremmer–Gervais case 
generalized determinantal identities on which cluster transformations are modeled can be extended to identities valid in the 
double. It is not too far-fetched then to suspect that there exists a cluster structure on D(G) compatible with the Poisson–
Lie bracket induced by the Poisson–Lie bracket on G . However, an interesting phenomenon was observed even in the first 
nontrivial example of D(GL2): although we were able to construct a log-canonical regular coordinate chart in terms of which 
all standard coordinate functions are expressed as (subtraction free) Laurent polynomials, it is not possible to define cluster 
transformations in such a way that all cluster variables that one expects to be mutable transform into regular functions. 
This problem is resolved, however, if one is allowed to use generalized cluster transformations previously considered in [5,6]
and, more recently, axiomatized in [4].

In this note, we describe such a generalized cluster structure on the Drinfeld double in the case of the standard Poisson–
Lie group GLn . Using this structure, one can recover the standard cluster structure on GLn and introduce a generalized cluster 
structure on GLn compatible with the Poisson bracket dual to the standard Poisson–Lie bracket. Note that the log-canonical 
basis suggested in [3] is different from the one constructed here and does not lead to a regular cluster structure.

2. Generalized cluster structures of geometric type and compatible Poisson brackets

Let B̃ = (bij) be an n × (n + m) integer matrix whose principal part B is skew-symmetrizable (recall that the principal 
part of a rectangular matrix is its maximal leading square submatrix). Let F be the field of rational functions in n + m
independent variables with rational coefficients. There are m distinguished variables; we denote them xn+1, . . . , xn+m and 
call stable. Finally, we define 2n stable τ -monomials vi;> and vi;< , 1 ≤ i ≤ n, via vi;> = ∏{x

bij

j : n + 1 ≤ j ≤ n + m, bij > 0}, 

vi;< = ∏{x
−bij

j : n + 1 ≤ j ≤ n + m, bij < 0}; here, as usual, the product over the empty set is assumed to be equal to 1.

A seed (of geometric type) in F is a triple � = (x, ̃B, P), where x = (x1, . . . , xn) is a transcendence basis of F over 
the field of fractions of Ā = Z[x±1

n+1, . . . , x
±1
n+m] (here we write x±1 instead of x, x−1), and P is a set of n strings. The ith 

string is a collection of monomials pir ∈ Ā, 0 ≤ r ≤ di , such that di is a factor of gcd{bij : 1 ≤ j ≤ n}, pi0 = pidi = 1, and 

p̂ir =
(

pir vr
i;>vdi−r

i;<
)1/di

belong to the polynomial ring A = Z[xn+1, . . . , xn+m], 0 ≤ r ≤ di ; it is called trivial if di = 1, and 
hence both elements of the string are equal to one.

Matrices B and B̃ are called the exchange matrix and the extended exchange matrix, respectively. The n-tuple x is called 
a cluster, and its elements x1, . . . , xn are called cluster variables. The monomials pir are called coefficients. We say that 
x̃ = (x1, . . . , xn+m) is an extended cluster, and �̃ = (̃x, ̃B, P) is an extended seed.

In certain cases it is convenient to represent the data (B̃, d1, . . . , dn) by a quiver. Assume that the matrix obtained from 
B̃ by replacing each bij by bij/di for 1 ≤ j ≤ n and retaining it for n + 1 ≤ j ≤ n + m has a skew-symmetric principal part. 
We say that the corresponding quiver Q represents (B̃, d1, . . . , dn) and write � = (x, Q , P). A vertex with di �= 1 is called 
special, and di is said to be its order. A stable vertex j such that bij = 0, 1 ≤ i ≤ n, is called isolated.

Given a seed as above, the adjacent cluster in direction k, 1 ≤ k ≤ n, is defined by x′ = (x \ {xk}) ∪ {x′
k}, where the new 

cluster variable x′
k is given by the generalized exchange relation

xkx′
k =

dk∑
j=0

p̂kju
j
k;>udk− j

k;<

with cluster τ -monomials uk;> and uk;< defined by uk;> = ∏{xbki/dk
i : 1 ≤ i ≤ n, bki > 0}, uk;< = ∏{x−bki/dk

i : 1 ≤ i ≤ n, bki < 0}.
We say that B̃ ′ is obtained from B̃ by a matrix mutation in direction k if b′

i j = −bij for i = k or j = k and b′
i j = bij +

(|bik|bkj + bik|bkj |)/2 otherwise. Note that gcd{bij : 1 ≤ j ≤ n} = gcd{b′
i j : 1 ≤ j ≤ n}, and for its arbitrary factor d, bij =

b′
i j mod d for n + 1 ≤ j ≤ n + m.

The coefficient mutation in direction k is given by p′
ir = pi,di−r for i = k and p′

ir = pir otherwise.
Given a seed � = (x, ̃B, P), we say that a seed �′ = (x′, ̃B ′, P ′) is adjacent to � (in direction k) if x′ , B̃ ′ and P ′ are 

as above. Two seeds are mutation equivalent if they can be connected by a sequence of pairwise adjacent seeds. The set 
of all seeds mutation equivalent to � is called the generalized cluster structure (of geometric type) in F associated with �
and denoted by GC(�); in what follows, we usually write GC(B̃, P), or even just GC instead. Clearly, by taking di = 1 for 
1 ≤ i ≤ n, and hence making all strings trivial, we get an ordinary cluster structure.

We associate with GC(B̃, P) two algebras of rank n over the ground ring A: the generalized cluster algebra A =A(GC) =
A(B̃, P), which is the A-subalgebra of F generated by all cluster variables in all seeds in GC(B̃, P), and the generalized 
upper cluster algebra A = A(GC) = A(B̃, P), which is the intersection of the rings of Laurent polynomials over A in cluster 
variables taken over all seeds in GC(B̃, P). The generalized Laurent phenomenon [4] claims the inclusion A(GC) ⊆A(GC).

Let V be a quasi-affine variety over C, C(V ) be the field of rational functions on V , and O(V ) be the ring of regular 
functions on V . Let GC be a generalized cluster structure in F as above. Assume that { f1, . . . , fn+m} is a transcendence 
basis of C(V ). Then the map θ : xi �→ f i , 1 ≤ i ≤ n + m, can be extended to a field isomorphism θ : FC → C(V ), where 
FC = F ⊗C is obtained from F by extension of scalars. The pair (GC, θ) is called a generalized cluster structure in C(V ), 
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{ f1, . . . , fn+m} is called an extended cluster in (GC, θ). Sometimes we omit direct indication of θ and say that GC is a 
generalized cluster structure on V . A generalized cluster structure (GC, θ) is called regular if θ(x) is a regular function for 
any cluster variable x. The two algebras defined above have their counterparts in FC obtained by extension of scalars; they 
are denoted AC and AC . If, moreover, the field isomorphism θ can be restricted to an isomorphism of AC (or AC) and 
O(V ), we say that AC (or AC) is naturally isomorphic to O(V ).

Let {·, ·} be a Poisson bracket on the ambient field F , and GC be a generalized cluster structure in F . We say that 
the bracket and the generalized cluster structure are compatible if any extended cluster x̃ = (x1, . . . , xn+m) is log-canonical
with respect to {·, ·}, that is, {xi, x j} = ωi j xi x j , where ωi j ∈ Z are constants for all i, j, 1 ≤ i, j ≤ n + m; it follows that all 
monomials pir are Casimirs of the bracket. The notion of compatibility extends to Poisson brackets on FC without any 
changes.

3. Standard Poisson–Lie group G and its Drinfeld double

Let G be a reductive complex Lie group equipped with a Poisson bracket {·, ·}. G is called a Poisson–Lie group if the 
multiplication map G × G � (x, y) �→ xy ∈ G is Poisson. Denote by 〈 , 〉 an invariant nondegenerate form on g, and by 
∇R , ∇ L the right and left gradients of functions on G with respect to this form. Let π>0, π<0 be projections of g onto 
subalgebras spanned by positive and negative roots and let R = π>0 − π<0. The standard Poisson–Lie bracket {·, ·}r on G can 
be written as

{ f1, f2}r = 1

2

(
〈R(∇ L f1),∇ L f2〉 − 〈R(∇R f1),∇R f2〉

)
. (1)

Following [10], the Drinfeld double of g is D(g) = g ⊕ g equipped with an invariant nondegenerate bilinear form 
〈〈(ξ, η), (ξ ′, η′)〉〉 = 〈ξ, ξ ′〉 − 〈η, η′〉. Define subalgebras d± of D(g) by d+ = {(ξ, ξ) : ξ ∈ g} and d− = {(R+(ξ), R−(ξ)) : ξ ∈ g}, 
where R± ∈ Endg is given by R± = 1

2 (R ± Id). The operator R D = πd+ − πd− can be used to define a Poisson–Lie structure 
on D(G) = G × G , the double of the group G , via

{ f1, f2}D = 1

2

(
〈〈R D(�L f1),�L f2〉〉 − 〈〈R D(�R f1),�R f2〉〉

)
, (2)

where �R and �L are right and left gradients with respect to 〈〈·, ·〉〉. Restriction of this bracket to G identified with the 
diagonal subgroup {(X, X) : X ∈ G} of D(G) (whose Lie algebra is d+) coincides with the Poisson–Lie bracket (1) on G .

A group Gr whose Lie algebra is d− is a Poisson–Lie subgroup of D(G) called the dual Poisson–Lie group of G . The map 
Gr � (X, Y ) �→ U = X−1Y induces another Poisson bracket on G . We denote this bracket {·, ·}∗ and refer to the Poisson 
manifold (G, {·, ·}∗) as G∗ .

4. Initial seed

4.1. Log-canonical basis

In this note we only deal with the case of G = GLn . Let (X, Y ) be a point in the double D(GLn). For k, l ≥ 1, k + l ≤ n − 1
define a (k + l) × (k + l) matrix

Fkl = Fkl(X, Y ) = [
X [n−k+1,n] Y [n−l+1,n] ]

[n−k−l+1,n] .

For 1 ≤ j ≤ i ≤ n define an (n − i + 1) × (n − i + 1) matrix Gij = Gij(X) = X [ j, j+n−i]
[i,n] . For 1 ≤ i ≤ j ≤ n define an (n − j + 1) ×

(n − j + 1) matrix Hij = Hij(Y ) = Y [ j,n]
[i,i+n− j] . For k, l ≥ 1, k + l ≤ n define an n × n matrix

	kl = 	kl(U ) = [
(U 0)[n−k+1,n] U [n−l+1,n] (U 2)[n] . . . (Un−k−l+1)[n] ]

,

where U = X−1Y . Note that the definition of Fkl can be extended to the case k + l = n yielding Fn−l,l = X	n−l,l .
Denote fkl = det Fkl , gij = det Gij , hij = det Hij and ϕkl = skl(det X)n−k−l+1 det 	kl , 2n2 − n + 1 functions in total. Here skl

is a sign defined as follows: it is periodic in k + l with period 4 for n odd and period 2 for n even; sn−l,l = 1; sn−l−1,l = (−1)l

for n odd and sn−l−1,l = (−1)l+1 for n even; sn−l−2,l = −1 for n odd; sn−l−3,l = (−1)l+1 for n odd. Note that the pre-factor 
in the definition of ϕkl is needed to obtain an irreducible polynomial function in matrix entries of X and Y .

Consider the polynomial det(X + λY ) = ∑n
i=0 λi sici(X, Y ), where si = (−1)i if n is even and si = 1 if n is odd. It is 

well-known that functions ci(X, Y ) are Casimirs for the Poisson–Lie bracket (2) on D(GLn). Note also that c0(X, Y ) = det X =
g11 and cn(X, Y ) = det Y = h11.

Theorem 4.1. The family of functions Fn = {gij, hij, fkl, ϕkl, c1, . . . , cn−1} forms a log-canonical coordinate system with respect to the 
Poisson–Lie bracket (2) on D(GLn).

The proof exploits various invariance properties of functions in Fn .



348 M. Gekhtman et al. / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 345–349
Fig. 1. Quiver Q 4.

4.2. Initial quiver

The quiver Q n contains 2n2 − n + 1 vertices labeled by the functions gij, hij, fkl, ϕkl in the log-canonical basis Fn . The 
Casimir functions c1, . . . , cn−1 correspond to isolated vertices. The vertex ϕ11 is special, and its order equals n. The vertices 
gi1, 1 ≤ i ≤ n, and h1 j , 1 ≤ j ≤ n, are stable.

The edges of Q n are comprised of (n −1)(n −2)/2 edge-disjoint triangles hij → hi+1, j+1 → hi+1, j → hij , 1 ≤ i < j ≤ n −1; 
n(n − 1)/2 disjoint triangles gij → gi+1, j+1 → gi, j+1 → gij , 1 ≤ j ≤ i ≤ n − 1; (n − 2)(n − 3)/2 edge-disjoint triangles fkl →
fk−1,l → fk−1,l+1 → fkl , k + l ≤ n − 1, k ≥ 2, l ≥ 1; (n − 2)(n − 3)/2 edge-disjoint triangles ϕkl → ϕk−1,l+1 → ϕk,l+1 → ϕkl , 
k + l ≤ n − 1, k ≥ 2, l ≥ 1; the path g11 → ϕ11 → ϕ21 → ϕ12 → ϕ31 → ·· · → ϕ1,l−1 → ϕl1 → ϕ1l → ·· · → ϕ1,n−1 of length 
2n − 3 for n > 2; the path ϕ1,n−1 → ϕ1,n−2 → ·· · → ϕ11 → h11 of length n − 1 for n > 2; the path ϕn−1,1 → fn−2,1 →
ϕn−2,2 → ·· · → ϕkl → fk−1,l → ϕk−1,l+1 → ·· · → ϕ1,n−1 of length 2(n − 2); the path h11 → ϕ1,n−1 → h22 → f1,n−2 → ·· · →
f1l → hn−l+1,n−l+1 → f1,l−1 → ·· · → hnn of length 2(n − 1); the path hnn → hn−1,n → ·· · → h1n of length n − 1; the path 
hnn → gnn → gn,n−1 → gn,n−2 → ·· · → gn1 of length n. Above we identify gi,i+1 with fn−i,1 for 1 ≤ i ≤ n − 1 and fk,n−k
with ϕk,n−k for 1 ≤ k ≤ n − 1. Note that the triangle ϕ21 → ϕ12 → ϕ22 → ϕ21 and the first path above have a common edge; 
this means that for any n > 3 there are two edges pointing from ϕ21 to ϕ12.

The quiver Q 4 is shown in Fig. 1. The stable vertices are shown as squares, the special vertex is shown as a hexagon, 
isolated vertices are not shown. It is easy to see that Q 4, as well as Q n for any n, can be embedded into a torus. This makes 
possible to distinguish “special” mutations that preserve the embedding. Such mutations play an essential role in the proofs 
of our main results.

Remark 4.1. On the diagonal subgroup {(X, X) : X ∈ GLn} of D(GLn), gii = hii , 1 ≤ i ≤ n, and functions fkl and ϕkl vanish 
identically. Accordingly, vertices in Q n that correspond to fkl and ϕkl are erased and vertices corresponding to gii and hii

are identified. As a result, one recovers a seed of the cluster structure compatible with the standard Poisson–Lie structure 
on GLn , see [6, Chap. 4.3].

4.3. Generalized exchange relation

Proposition 4.1. Let A be a complex n × n matrix. For u, v ∈C
n, define matrices

�(u) =
[

u Au A2u . . . An−1u
]
, �1(u, v) =

[
v u Au . . . An−2u

]
, �2(u, v) =

[
Av u Au . . . An−2u

]
.

In addition, let w be the last row of the classical adjoint of �1(u, v), i.e. w�1(u, v) = (det �1(u, v)) eT
n . Define �∗(u, v) to be the 

matrix with rows w, w A, . . . , w An−1 . Then

det
(

det �1(u, v)A − det �2(u, v)1
)

= (−1)
n(n−1)

2 det�(u)det �∗(u, v).

Specializing Proposition 4.1 to the case A = X−1Y , u = en, v = en−1, one obtains
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Corollary 4.2. For any n > 2,

det(s12ϕ12 X + s21ϕ21Y ) = ϕ11 P∗
n , (3)

where P∗
n is a polynomial in the entries of X and Y .

Relation (3) will serve as a generalized exchange relation in our definition of a generalized cluster structure on D(GLn). 
More exactly, the set Pn contains only one nontrivial string {pir}, 1 ≤ r ≤ n − 1. It corresponds to the vertex ϕ11, and 
pir = cn

r gr−n
11 h−r

11 , 1 ≤ r ≤ n − 1. The strings corresponding to all other vertices are trivial.

5. Main results

Theorem 5.1. (i) The extended seed �̃n = (Fn, Q n, Pn) defines a generalized cluster structure in the ring of regular functions on 
D(GLn) compatible with the standard Poisson–Lie structure on D(GLn).

(ii) The corresponding generalized upper cluster algebra is naturally isomorphic to the ring of regular functions on Matn × Matn.

The strategy of the proof is similar to that employed, e.g., in [6, Ch. 4] or [9], although adjustments allowing for the 
presence of a generalized cluster transformation have to be made. The difficult part is to show that all generators of the 
ring of regular functions are contained in A.

Using Theorem 5.1, we can construct a generalized cluster structure on GL∗
n . For U ∈ GL∗

n , denote ψkl(U ) = skl det	kl , 
where skl are the signs defined in Section 4. The initial extended cluster F ∗

n for GL∗
n consists of functions ψkl(U ), k, l ≥ 1, 

k + l ≤ n, hij(U ), 2 ≤ i ≤ j ≤ n, and ci(1, U ), 1 ≤ i ≤ n −1. To obtain the initial seed for GL∗
n , we apply a certain sequence T of 

cluster transformations to the initial seed for D(GLn). This sequence does not involve vertices associated with functions ϕkl . 
The resulting cluster T (Fn) contains a subset {(det X)ν( f ) f : f ∈ F ∗

n } with ν( f ) ∈ Z+ (in particular, ν(ψkl) = n − k − l + 1). 
These functions are attached to a subquiver Q ∗

n in the resulting quiver T (Q n); it is isomorphic to the subquiver of Q n

formed by vertices associated with functions ϕkl, f i j, hii , see Fig. 1, where the vertices of the corresponding subquiver are 
shaded. Functions hii(U ) are declared stable variables, ci(1, U ) remain isolated. All exchange relations defined by mutable 
vertices of Q ∗

n are homogeneous in det X . This allows us to use (F ∗
n , Q ∗

n , Pn) as an initial seed for GL∗
n . The generalized 

exchanged relation associated with the cluster variable ψ11 now takes form det(s12ψ121 + s21ψ21U ) = ψ11�
∗
n , where �∗

n is 
a polynomial in the entries of U .

Theorem 5.2. (i) The generalized cluster structure on GL∗
n with the initial seed described above is compatible with {·, ·}∗ and regular.

(ii) The corresponding generalized upper cluster algebra is naturally isomorphic to the ring of regular functions on Matn.
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