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In the present paper, we sketch the proof of the fact that for any open connected set � ⊂
R

n+1, n ≥ 1, and any E ⊂ ∂� with 0 < Hn(E) < ∞, absolute continuity of the harmonic 
measure ω with respect to the Hausdorff measure on E implies that ω|E is rectifiable.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cet article, nous présentons les grandes lignes de la démonstration prouvant que, pour 
tout ensemble connexe ouvert � ⊂R

n+1, n ≥ 1, et pour tout E ⊂ ∂� avec 0 <Hn(E) < ∞, 
la continuité absolue de la mesure harmonique ω par rapport à la mesure de Hausdorff 
sur E implique la rectifiabilité de ω|E .
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Le résultat principal de cet article est le théorème suivant, qui révèle la structure fine de toutes les mesures harmoniques.
Si une mesure harmonique d’un certain domaine dans Rn+1 est absolument continue par rapport à la mesure de 

Hausdorff Hn , alors cette mesure harmonique est n-rectifiable. En particulier, il existe un graphe (pivoté) d’une fonction 
lipschitzienne qui contient une partie positive de la mesure harmonique.

La preuve peut être divisée en trois parties principales. Tout d’abord, on considère le noyau de Riesz de singularité n
(c’est-à-dire le gradient du noyau de Newton) et on l’applique à cette mesure harmonique. On veut estimer le potentiel que 
l’on vient d’obtenir. Pour cela, on utilise les cellules de David–Mattila et quelques considérations combinatoires pour trouver 
une partie positive de mesure harmonique sur laquelle ce potentiel est borné.

La deuxième partie de la preuve consiste à utiliser un théorème du type T 1 pour les mesures non homogènes obtenu 
par Nazarov–Treil–Volberg au début des années 2000. On obtient donc une partie positive de la mesure harmonique telle 
que l’opérateur de Riesz est borné par rapport à cette partie de la mesure harmonique.

Enfin, on utilise le résultat récent de Nazarov–Tolsa–Volberg (la solution d’un problème de David–Semmes) pour établir 
que ladite partie de la mesure harmonique est rectifiable.

1. Introduction and notation

In what follows, � will denote a connected open set. As usual, using the Perron method and Riesz Representation 
Theorem, we can define the harmonic measure of � with a pole at p ∈ � (denote it by ωp ) for any bounded domain and 
use a limiting procedure to extend this definition to unbounded domains (see, e.g., [7, Section 3]).

We call a Radon measure σ on Rn+1 n-rectifiable if its (any) Borel support can be covered by countably many (rotated) 
graphs of scalar Lipschitz functions on Rn up to zero σ measure (in particular any pure point measure is rectifiable in this 
definition, but we will apply it to harmonic measures, such measures never have point masses.)

The main result that we announce here is the following.

Theorem 1.1. Let � be any open connected set in Rn+1, n ≥ 1 and let ω = ωp , for some p ∈ �, be the harmonic measure on �. Let E
be a Borel set, and let ω|E �Hn|E . Then ω|E is n-rectifiable.

A simple corollary is that if ω|E and Hn|E are mutually absolutely continuous then Hn|E is n-rectifiable. In Besicovitch 
theory, such sets are called n-rectifiable.

The structure of harmonic measures was a focus of attention of many mathematicians starting with Carleson’s article 
[5], which proved that harmonic measure on any continuum in the plane has dimension at least 1/2 + ε for universal 
positive ε . Without an ε the result was known for a long time and was nothing but a re-interpretation of Köbe distortion 
theorem. Carleson’s result had a very difficult proof, but Makarov found a novel approach that also established that harmonic 
measure on any continuum on the plane has dimension exactly 1. Carleson’s and Makarov’s works generated a fantastic 
amount of very difficult and revealing results about the structure of harmonic measure. Topological restrictions (like being 
a continuum) and dimension played an important part from the start. Let us mention that 1) for any planar domain any 
harmonic measure has dimension at most 1 (Jones–Wolff, [12]); 2) there are no analogs of Makarov’s or Jones–Wolff’s 
results in dimension 3 and higher (Bourgain, [4], Wolff, [20]); 3) in dimension 2 (planar domains) if harmonic measure on 
a continuum dwells on a good set (meaning that its Borel support can be covered by countably many (rotated) Lipschitz 
graphs) then harmonic measure is absolutely continuous with respect to the surface measure H1 (Bishop–Jones, [3]). It is also 
shown in [3] that some topological restrictions are necessary, for there is a 1-rectifiable set in a plane for which harmonic 
measure is positive and Hausdorff measure is zero.

Notice that Theorem 1.1 establishes the converse to Bishop–Jones result: they claim that in R2 and with topological 
restriction (continuum) 1-rectifiable harmonic measure must be absolutely continuous with respect to measure H1 . We 
claim that without any restrictions whatsoever and in any Rn+1 the converse is true: if harmonic measure is absolutely 
continuous with respect to Hn , then it is n-rectifiable. Moreover, our result is very local, one can start with harmonic 
measure restricted to an arbitrary Borel set E , and again its absolute continuity with respect to Hn|E implies that harmonic 
measure restricted to E is n-rectifiable.

In this respect, let us recall that two natural directions were considered in [7,8,11]: 1) geometry-to-analysis, when 
some sort of (say, scalar invariant) rectifiability of the boundary implies quantitative claims on the density of harmonic 
measure with respect to Hn , 2) analysis-to-geometry, when the absolute continuity of harmonic measure and Hn in a 
scale invariant fashion implies the quantitative rectifiability of the boundary. As mentioned above, in geometry-to-analysis 
direction Bishop–Jones in [3] found that certain additional topological properties are necessary. But Theorem 1.1 shows that 
no such obstacles exist in the direction analysis-to-geometry.

This paper is a short announcement of the results in [1], which in turn arises from the union of two separate works, [2]
and [10]. In [2], a version of Theorem 1.1 was proved under the additional assumption that the boundary of � is porous in E
(a certain topological restriction). In [10] the porosity assumption was removed. Both [2] and [10] exist only as preprints on 
ArXiv.
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We finish this section with some notation and preliminaries. Given a signed Radon measure ν in Rn+1 we consider the 
n-dimensional Riesz transform

Rν(x) =
∫

x − y

|x − y|n+1
dν(y),

whenever the integral makes sense. For ε > 0, its ε-truncated version is given by

Rεν(x) =
∫

|x−y|>ε

x − y

|x − y|n+1
dν(y), R∗,δν(x) = sup

ε>δ

|Rεν(x)|.

We also consider the maximal operator

Mn
δν(x) = sup

r>δ

|ν|(B(x, r))

rn
,

In the case δ = 0 we write R∗ν(x) := R∗,0ν(x) and Mnν(x) := Mn
0ν(x).

Next, let Hs∞ denote the Hausdorff content of order s. We recall a result of Bourgain from [4].

Lemma 1.2 (Bourgain’s lemma). There is δ0 > 0 depending only on n ≥ 1 so that the following holds for δ ∈ (0, δ0). Let � �Rn+1 be 
a bounded domain, n + 1 ≥ s > n − 1, ξ ∈ ∂�, r > 0, and B = B(ξ, r). Then

ωx(B) �n,s
Hs∞(∂� ∩ δB)

(δr)s
for all x ∈ δB ∩ �.

Let us point out that it is not difficult to prove that if Theorem 1.1 holds on bounded domains, then it remains valid for 
any open set � ⊂ Rn+1. We shall restrict our discussion here to the case when � is bounded. Also, for brevity, we consider 
the case n ≥ 2 only. For details on these and other issues we refer the reader to [1].

2. David–Mattila cells, doubling cells

What follows is the sketch of the proof of our main result. The details should be found in [1]. To start, we consider 
the dyadic lattice of cubes with small boundaries of David-Mattila associated with ωp . It has been constructed in [6, Theo-
rem 3.2] (with ωp replaced by a general Radon measure).

Lemma 2.1. (See David and Mattila [6].) Consider two constants C0 > 1 and A0 > 5000 C0 and denote W = suppωp . Then there 
exists a sequence of partitions of W into Borel subsets Q , Q ∈ Dk, with the following properties: 1) for each integer k ≥ 0, W is the 
disjoint union of the “cubes” Q , Q ∈ Dk, and if k < l, Q ∈ Dl , and R ∈ Dk, then either Q ∩ R = ∅ or else Q ⊂ R. 2) For each k ≥ 0
and each cube Q ∈Dk, there is a ball B(Q ) = B(zQ , r(Q )) such that

zQ ∈ W , A−k
0 ≤ r(Q ) ≤ C0 A−k

0 , W ∩ B(Q ) ⊂ Q ⊂ W ∩ 28 B(Q ) = W ∩ B(zQ ,28r(Q )),

and the balls 5B(Q ), Q ∈ Dk, are disjoint. 3) The cubes Q ∈ Dk have “small boundaries” – see [6] for a precise definition. 4) Denote 
by Ddb

k the family of cubes Q ∈Dk for which

ωp(100B(Q )) ≤ C0 ωp(B(Q )). (1)

We have that r(Q ) = A−k
0 when Q ∈ Dk \ Ddb

k and ωp(100B(Q )) ≤ C−l
0 ωp(100l+1 B(Q )) for all l ≥ 1 such that 100l ≤ C0 and 

Q ∈Dk \Ddb
k .

We use the notation D = ⋃
k≥0 Dk . Observe that the families Dk are only defined for k ≥ 0. So the diameters of the 

cubes from D are uniformly bounded from above. Given Q ∈ Dk , we denote J (Q ) = k. We call �(Q ) = 56 C0 A−k
0 the side 

length of Q . Observe that r(Q ) ∼ diam(B(Q )) ∼ �(Q ). Also, we call zQ the center of Q , and the cube Q ′ ∈Dk−1 such that 
Q ′ ⊃ Q the parent of Q . We set B Q = 28 B(Q ) = B(zQ , 28 r(Q )).

We denote Ddb = ⋃
k≥0 Ddb

k . Note that, in particular, from (1) it follows that

ωp(3B Q ) ≤ ωp(100B(Q )) ≤ C0 ωp(Q ) if Q ∈ Ddb. (2)

For this reason we will refer to the cubes from Ddb as doubling. As shown in [6, Lemma 5.28], every cube R ∈ D can be 
covered ωp -a.e. by a family of doubling cubes.
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3. Good and bad cells. The estimate of R on good doubling cells

We introduce the notions of bad and good David–Mattila cells. First we need the n-dimensional Frostman measure. Let 
g ∈ L1(ωp) be such that ωp |E = g Hn|∂� . Given M > 0, let

E M = {x ∈ ∂� : M−1 ≤ g(x) ≤ M}.
Take M big enough so that ωp(E M) ≥ ωp(E)/2, say. Consider an arbitrary compact set F M ⊂ E M with ωp(F M) > 0. We 
will show that there exists G0 ⊂ F M with ωp(G0) > 0 which is n-rectifiable. Clearly, this suffices to prove that ωp |EM is 
n-rectifiable, and letting M → ∞ we get the full n-rectifiability of ωp |E .

Let μ be an n-dimensional Frostman measure for F M . That is, μ is a non-zero Radon measure supported on F M such 
that μ(B(x, r)) ≤ C rn for all x ∈ Rn+1. Further, by renormalizing μ, we can assume that ‖μ‖ = 1. Of course the constant C
above will depend on Hn∞(F M), and the same may happen for all the constants C to appear, but this will not bother us. 
Notice that μ �Hn|F M � ωp . In fact, for any set H ⊂ F M ,

μ(H) ≤ C Hn∞(H) ≤ C Hn(H) ≤ C M ωp(H). (3)

The cell Q ∈D is called bad if it is a maximal cube satisfying one of the conditions below:

– high density (HD): ωp(3B Q ) ≥ A�(Q )n , where A is a suitably large number,
– or low measure μ (LM): μ(B(Q )) ≤ τωp(Q ), where τ is a suitably small number.

Any cube which is not contained in a bad cell will be called good.
Notice that 

∑
Q -bad, Q ∈LM μ(Q ) ≤ τ

∑
Q -bad, Q ∈LM ωp(Q ) ≤ τ ‖ω‖ = τ = τ μ(F M). Therefore, taking into account that τ

is small, that μ is dominated by Hn and that ωp |F M and Hn|F M are boundedly equivalent, we conclude that ωp(F M \⋃
Q -bad, Q ∈LM Q ) > 0. Also, taking into account that upper density of ωp , θ∗

ωp (x) = lim supr→0
ωp(B(x,r))

rn , is finite ωp|E -a.e. 
(again because ωp |E � Hn|E ), for A large enough, we can dispose of (HD) cubes as well. Ultimately, a little more careful 
consideration shows that ωp(F M ∩ ⋃

Q ∈Ddb
0

Q \ ⋃
Q -bad Q ) > 0.1 Notice also that the (HD) condition on bad cubes implies 

that

Mnωp(x) � A for ωp-a.e. x ∈ F M \
⋃

Q -bad

Q . (4)

It remains to concentrate on good cells contained in some cube from Ddb
0 . We start with

Lemma 3.1. For any good doubling cell R one has the estimate
∣∣Rr(B R )ω

p(x)
∣∣ � C(A, M, τ ,dist(p, ∂�)) for any x ∈ R.

The idea is to reduce the desired bound to certain estimates on the Green function of �, which can be written as

G(x, y) = E(x − y) −
∫

∂�

E(x − z)dωy(z) for m-a.e. x ∈Rn+1,

where E is the fundamental solution for the Laplacian. Since the kernel of the Riesz transform is K (x) = cn ∇E(x), essentially 
differentiating the expression above and using a trivial estimate on ∇E(x) in terms of distance from p to ∂�, we are left 
with considering the gradient of the Green function.2 In fact, all we need is the bound 1

r |G(y, p)| � 1 for all y ∈ B(x, r) ∩�, 
r ≈ r(B Q ).

To this end, take δ > 0 from Bourgain’s Lemma and fix a point xR such that μ(B(xR , δr(R))) is maximal (or almost 
maximal) possible. Denote B R := B(xR , δr(R)). Then automatically, δnμ(R) � μ(B R). Thus, by Bourgain’s lemma and by 
(3) we have infz∈∂(2B R ) ω

z(3B R) ≥ c μ(R)
r(R)n . This very easily implies (for n ≥ 2 at least) that for every z ∈ ∂(2B R) and every 

y ∈ B R one has 1
r(R)

G(z, y) � ωz(3B R )
μ(R)

. Now the maximal principle yields (we also use that R is good and doubling in the 
last inequality)

∀y ∈ B R ,
1

r(R)
G(y, p) � ωp(3B R)

μ(R)
� τ−1, (5)

as desired. The similar inequality can be proved for n = 1 but requires more work.

1 Here we start working with a slightly enlarged collection of doubling cubes, but let us disregard these details in the present brief sketch.
2 In a careful argument, one has to utilize a smooth truncation of the kernel of the Riesz transform. The difference between the latter and Rr(B R)ω

p(xR )

is fairly directly controlled by the Mnωp , which is in turn controlled by (4).
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Consider now the case when Q is good and non-doubling, Q /∈Ddb , such that, in addition, Q ⊂ R0, where R0 ∈Ddb
0 . Let 

R ⊃ Q be the cube from Ddb with minimal side length containing Q . Then for all y ∈ B Q we have

|Rr(B Q )ω
p(y)| ≤ |Rr(B R )ω

p(y)| + C
∑

P∈D:Q ⊂P⊂R

θωp (2B P ),

where θωp (B) := ωp(B)
r(B)n . The first term is bounded by some constant as above since R is good and doubling. The sum is 

bounded by θωp (4B R) as for all such cubes ωp(100B(P )) ≤ A−10n( J (P )− J (R)−1)
0 ωp(100B(R)) – see [6, Lemma 5.31]. Finally, 

θωp (4B R) is bounded by A as R is not high density – see (HD). This combines with Lemma 3.1 to yield the key theorem:

Theorem 3.2. Let G M := F M ∩ ⋃
Q ∈Ddb

0
Q \ ⋃

Q -bad Q . Then ωp(G M) > 0 and

R∗ωp(x) � C(A, M, τ ,dist(p, ∂�)) for ωp-a.e. x ∈ G M .

4. Harmonic measure: its singular integral and its rectifiability

Theorem 4.1. Let σ be a Radon measure with compact support on Rn+1 and consider a σ -measurable set G with σ(G) > 0 such that

G ⊂ {x ∈Rd : Mnσ(x) < ∞ and R∗σ(x) < ∞}.
Then there exists a Borel subset G0 ⊂ G with σ(G0) > 0 such that supx∈G0

Mnσ |G0(x) < ∞ and Rσ |G0
is bounded in L2(σ |G0).

This result follows from the non-homogeneous T b theorem of Nazarov, Treil and Volberg in [16] (see also [19]) in 
combination with the methods in [17]. For the detailed proof in the case of the Cauchy transform, see [18, Theorem 8.13]. 
The same arguments with very minor modifications work for the Riesz transform. This result applies to quite general 
antisymmetric Calderon–Zygmund operators. However, the next theorem uses very prominently that we work with the 
Riesz transform, and that its singularity is precisely n. It is the main result in [15], which is based in its turn on the solution 
to the (co-dimension-1) David–Semmes conjecture in [14] (see also [9] in the context of uniform domains).

Theorem 4.2. Let σ be Radon measure on Rn+1 and σ � Hn. If the vector n-dimensional Riesz transform R is a bounded operator 
on L2(σ ), then σ is rectifiable.

By the latter theorem (or the David–Léger theorem [13] for n = 1), we deduce that ωp |G0 is n-rectifiable.
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