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It has been shown by Sylvester (2011) [10] that the set of interior transmission eigenvalues 
forms a discrete set if the contrast does not change its sign in a neighborhood of the 
boundary. In this short note, we give a more elementary proof of this fact using the 
classical inf–sup conditions of Babuška–Brezzi.
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r é s u m é

Il a été démontré par Sylvester (2011) [10] que l’ensemble des valeurs propres intérieures 
de transmission constitue un ensemble discret si le contraste ne change pas de signe dans 
un voisinage du bord. Nous donnons une preuve plus élémentaire de ce fait en utilisant les 
conditions classiques « inf–sup » de Babuška–Brezzi.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Transmission eigenvalue problems are non-selfadjoint problems that occur in the study of the scattering of time-
harmonic waves by inhomogeneous media. The scalar case in acoustics leads to the problem to determine k > 0 and 
corresponding nontrivial pairs (u, w) such that

�w + k2 w = 0 in D , �u + k2(1 + q)u = 0 in D , (1.1)

u = w on ∂ D , ∂u/∂ν = ∂ w/∂ν on ∂ D . (1.2)

As discussed in, e.g., [7] this problem is neither self-adjoint nor elliptic. Therefore, standard results from functional analysis 
don’t apply. The first question, answered in many papers starting with [3], concerns the discreteness of the spectrum. The 
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assumption that the contrast q does not change its sign in the domain D has been weakened in [10] to the assumption that 
it does not change its sign on some neighborhood of the boundary ∂ D . For the, in some sense simpler (because elliptic), 
anisotropic case, this has been assumed in, e.g., [1,6]. For an overview on transmission eigenvalue problems, we refer to 
[2,5,9] (see also [7]).

In this note, we want to show that Sylvester’s result [10] can also be obtained by the use of the classical inf–sup 
conditions of Babuška–Brezzi (see [8]), which are closely related to the T-coercivity approach of, e.g., [1].

2. Discreteness of the spectrum

As it is well known the eigenvalue problem (1.1), (1.2) is degenerated in the sense that we look for u, w ∈ L2(D) such 
that u − w ∈ H2

0(D) = {v ∈ H2(D) : v = ∂v/∂ν = 0 on ∂ D}. We set λ = −k2 and v = (u − w)/λ. Then the problem is to 
determine λ ∈C and a nontrivial pair (v, w) ∈ H2

0(D) × L2(D) such that

�w − λw = 0 and �v − λ(1 + q)v = qw in D (2.3)

in the following sense:∫
D

[
�ψ − λψ

]
w dx = 0 ,

∫
D

[
�v − λ(1 + q)v − qw

]
φ dx = 0

for all ψ ∈ H2
0(D) and φ ∈ L2(D).

Definition 2.1. λ ∈ C is called interior transmission eigenvalue if there exists a non-trivial pair (v, w) ∈ X = H2
0(D) × L2(D)

such that (2.3) holds in the variational sense.

We equip X with the norm ‖(v, w)‖X = ‖v‖H2(D) + ‖w‖L2(D) and the corresponding inner product 〈·, ·〉X .
For any λ ∈C we define the sesquilinear form aλ : X × X →C by

aλ(v, w;ψ,φ) =
∫
D

(�ψ − λψ) w dx +
∫
D

(�v − λ(1 + q)v)φ − q w φ dx

for (v, w) ∈ X and (ψ, φ) ∈ X .
Then λ is an eigenvalue if there exists a nontrivial pair (v, w) ∈ X with aλ(v, w; ψ, φ) = 0 for all (ψ, φ) ∈ X .
We define also the following auxiliary form âλ by

âλ(v, w;ψ,φ) =
∫
D

(�ψ − λψ) w dx +
∫
D

(�v − λv)φ − q w φ dx

for (v, w), (ψ, φ) ∈ X . The representation theorem of Riesz yields the existence of bounded operators Aλ, Âλ : X → X such 
that

aλ(v, w;ψ,φ) = 〈
Aλ(v, w); (ψ,φ)

〉
X for all (v, w), (ψ,φ) ∈ X , (2.4)

and, analogously, the operator Âλ is defined. We note that λ is an eigenvalue if, and only if, Aλ fails to be injective.
We make the following assumption:

Assumption 2.2. There exists q0 > 0 and some neighborhood1 R of ∂ D such that q ≥ q0 on R or q ≤ −q0 on R .

We will need the following lemma from the theory of the Helmholtz equation.

Lemma 2.3. Let q ∈ L∞(D) satisfy Assumption 2.2. Then there exist ĉ > 0 and d > 0 such that for all λ > 0 the following estimate 
holds: ∫

D\R

|w|2 dx ≤ ĉ e−2d
√

λ

∫
R

|q| |w|2 dx (2.5)

for all solutions w ∈ L2(D) of �w − λw = 0 in D.

1 That is, an open subdomain R ⊂ D with ∂D ⊂ R .
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Proof. We choose a neighborhood R ′ of ∂ D with d = dist(D \ R, R ′) > 0 and a function ρ ∈ C∞(D) with compact support in 
D and ρ = 1 in D \ R ′ . We apply Green’s representation theorem (see, e.g., [4]) to ρw in D where w satisfies �w −λw = 0
in D which yields

ρ(x) w(x) = −
∫
D

[
�(ρw)(y) − λ(ρw)(y)

] exp(−√
λ|x − y|)

4π |x − y| dy

= −
∫
R ′

[
2∇ρ(y) · ∇w(y) + w(y)�ρ(y)

] exp(−√
λ|x − y|)

4π |x − y| dy

=
∫
R ′

[
2 divy

(
∇ρ(y)

exp(−√
λ|x − y|)

4π |x − y|

)
− �ρ(y)

exp(−√
λ|x − y|)

4π |x − y|

]
w(y)dy .

For x ∈ D \ R we conclude that∣∣w(x)
∣∣ ≤ c1 e−d

√
λ

∫
R ′

∣∣w(y)
∣∣ dy

for some c1 > 0 which depends only on D , R , R ′ , and ρ , and thus

∣∣w(x)
∣∣2 ≤ c2

1 e−2d
√

λ |R|
∫
R

∣∣w(y)
∣∣2

dy ≤ c2
1 |R|
q0

e−2d
√

λ

∫
R

|q(y)| ∣∣w(y)
∣∣2

dy .

Integration with respect to x over D \ R yields the assertion. �
We show the following inf–sup condition.

Theorem 2.4. There exists λ0 > 0 and c > 0 such that for all λ ≥ λ0

sup
(ψ,φ) �=0

∣∣âλ(v, w;ψ,φ)
∣∣

‖(ψ,φ)‖X
≥ c ‖(v, w)‖X for all (v, w) ∈ X . (2.6)

Proof. We fix λ0 such that∫
D\R

|q| |w|2 dx ≤ ‖q‖∞
∫

D\R

|w|2 dx ≤ 1

2

∫
R

|q| |w|2 dx (2.7)

for all solutions to �w − λw = 0 in D and all λ ≥ λ0. This is possible by the estimate (2.5) of Lemma 2.3. If a constant c
with (2.6) does not exist, there exists a sequence (v j, w j) ∈ X with ‖(v j, w j)‖X = 1 and

sup
(ψ,φ) �=0

∣∣âλ(v j, w j;ψ,φ)
∣∣

‖(ψ,φ)‖X
−→ 0 , j → ∞ . (2.8)

There exist weakly convergent subsequences w j ⇀ w in L2(D) and v j ⇀ v in H2(D) for some (v, w) ∈ X . From (2.8) we 
observe that (v, w) satisfies �w − λw = 0 and �v − λv = qw in D .

In the first part, we show again that v and w vanish.
From Re âλ(v, w; −v, w) = 0 we conclude that 

∫
D q |w|2dx = 0. The estimate (2.7) yields

∫
R

|q| |w|2dx =
∣∣∣∣∣∣
∫
R

q |w|2dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

D\R

q |w|2dx

∣∣∣∣∣∣∣ ≤
∫

D\R

|q| |w|2dx ≤ 1

2

∫
R

|q| |w|2dx

and thus w = 0 on R . Analytic continuation yields w = 0 in all of D and thus also v = 0 by 0 = âλ(v, w; 0, v) = ∫
D(�v −

λv)v dx = − 
∫

D(|∇v|2 + λ|v|2) dx.
In the second part, we prove a contradiction.
We choose a neighborhood R ′ of ∂ D with closure in R ∪ ∂ D and a non-negative function ρ1 ∈ C∞(D) with ρ1 = 0 in 

D \ R and ρ1 = 1 in R ′ and substitute ψ = ρ1 v j and φ = −ρ1 w j in (2.8). Then, because (−ρ1 w j, ρ1 v j) is bounded in X ,∫ [
�(ρ1 v j) − λρ1 v j

]
w j dx −

∫
(�v j − λv j)ρ1 w j − qρ1|w j|2 dx
R R
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tends to zero, thus

Re
∫
R

[
2 w j ∇ρ1 · ∇v j + v j w j �ρ1 + q ρ1|w j|2

]
dx −→ 0 . (2.9)

Since v j converges weakly to zero in H2(D), it converges to zero in the norm of H1(D). Therefore, the first two terms 
converge to zero, thus also 

∫
R q ρ1 |w j |2 dx → 0. Since q is of one sign on R and |q|ρ1 ≥ q0 on R ′ we conclude that w j

tends to zero in L2(R ′).
Now we choose a third neighborhood R ′′ of ∂ D with closure in R ′ ∪ ∂ D and a non-negative function ρ2 ∈ C∞(D) with 

ρ2 = 0 in R ′′ and ρ2 = 1 in D \ R ′ . We determine z j ∈ H2(D) with �z j − λz j = w j in D and z j = 0 on ∂ D . We substitute 
φ = 0 and ψ = ρ2z j in (2.8) which yields (note that (ρ2z j) is bounded in H2(D))∫

D\R ′′

[
�(ρ2z j) − λρ2z j

]
w j dx −→ 0 ,

that is, ∫
D\R ′′

[
ρ2|w j|2 + 2 (∇ρ2 · ∇z j) w j + z j �ρ2 w j

]
dx −→ 0 .

Since w j ⇀ 0 in L2(D), we conclude that z j ⇀ 0 in H2(D) and thus z j → 0 in H1(D). Furthermore, we note that ρ2 = 1 in 
D \ R ′ and thus 

∫
D\R ′ |w j|2dx −→ 0.

Altogether, we have shown that w j → 0 in L2(D).
Finally, set ψ = 0 and φ = (�v j − λv j) in (2.8) which yields

1

‖�v j − λv j‖L2(D)

∫
D

|�v j − λv j|2 − q w j(�v j − λv j)dx −→ 0

that is,

‖�v j − λv j‖L2(D) −
∫
D

q w j
�v j − λv j

‖�v j − λv j‖L2(D)

dx −→ 0 ,

which implies convergence �v j − λv j → 0 in L2(D). Therefore, �v j tends to zero in L2(D) which is equivalent to v j → 0
in H2(D).

Altogether we have shown (w j, v j) → 0 in X , which is impossible since its norm is one. �
Corollary 2.5. Let λ0 > 0 such that the inf–sup condition (2.6) of Theorem 2.4 holds. Then the operator Âλ : X → X is self-adjoint and 
an isomorphism from X onto itself.

Proof. This follows again from a generalized Lax–Milgram theorem (see, e.g., [8]). Note that the non-degeneracy condition 
holds as well because âλ is Hermitian. �
Theorem 2.6. For any λ, μ ∈R the differences Aμ − Âλ and Aμ − Aλ are compact.

Proof. Let (v j, w j) ∈ X converge to zero weakly in X and let (ψ, φ) ∈ X with ‖(ψ, φ)‖X = 1. Note that

(
aμ − âλ

)
(v j, w j;ψ,φ) = (λ − μ)

∫
D

ψ w j dx +
∫
D

[
λ − μ(1 + q)

]
v j φ dx .

v j ⇀ 0 in H2(D) implies norm convergence v j → 0 in L2(D), and thus∣∣∣∣∣∣
∫
D

[
λ − μ(1 + q)

]
v j φ dx

∣∣∣∣∣∣ ≤ ‖λ − μ(1 + q)‖L∞(D)‖v j‖L2(D)‖φ‖L2(D) ≤ ‖λ − μ(1 + q)‖L∞(D)‖v j‖L2(D) .

Furthermore, define z j ∈ H1(D) with �z j = w j in D and z j = 0 on ∂ D . Then z j ⇀ 0 in H1(D) and thus z j → 0 in L2(D). 
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Therefore,∣∣∣∣∣∣
∫
D

ψ w j dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
D

ψ �z j dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
D

�ψ z j dx

∣∣∣∣∣∣ ≤ ‖�ψ‖L2(D)‖z j‖L2(D) ≤ ‖z j‖L2(D)

and altogether

sup
‖(ψ,φ)‖X =1

∣∣(aμ − âλ

)
(v j, w j;ψ,φ)

∣∣ ≤ c
[‖z j‖L2(D) + ‖v j‖L2(D)

] −→ 0 .

This implies compactness of Aμ − Âλ . The proof for Aμ − Aλ follows the same lines. �
Theorem 2.7. For sufficiently large λ > 0 the operator Aλ is an isomorphism from X onto itself.

Proof. It is sufficient to prove injectivity because Âλ is an isomorphism and Âλ − Aλ is compact.
Assume that there exists a sequence λ j → ∞ and functions (v j, w j) ∈ X with ‖(v j, w j)‖X = 1 and Aλ j (v j, w j) = 0. 

Therefore, the functions w j ∈ L2(D) and v j ∈ H2
0(D) satisfy the equations

�w j − λ j w j = 0 and �v j − λ j(1 + q)v j = qw j in D . (2.10)

Defining ρ j = ‖q‖∞ĉ exp(−2d
√

λ j) and splitting the region of integration into R and D \ R yields by Lemma 2.3 that

(1 − ρ j)

∫
R

|q||w j|2dx ≤
∫
D

q |w j|2dx ≤ (1 + ρ j)

∫
R

|q||w j|2dx . (2.11)

Multiplication of the second equation of (2.10) by w j , integrating and using Green’s second theorem yields∫
D

q w j
[
λ j v j + w j

]
dx = 0 . (2.12)

Multiplication of the second equation of (2.10) by v j , integrating and using Green’s first theorem yields∫
D

[|∇v j|2 + λ j(1 + q)|v j|2
]

dx = −
∫
D

q w j v j dx = 1

λ j

∫
D

q |w j|2dx . (2.13)

Now we distinguish between two cases.

Case 1: q is negative on R . Then the right integral in (2.13) is negative as it follows from Lemma 2.3 because

−
∫
D

q |w j|2dx ≥ −
∫
R

q |w j|2dx −
∫

D\R

|q| |w j|2dx ≥ (1 − ρ j)

∫
R

|q| |w j|2dx > 0 .

This contradicts (2.13).

Case 2: q is positive on R . From (2.12), we conclude

(1 − ρ j)

∫
R

q|w j|2dx ≤
∫
D

q |w j|2dx = −λ j

∫
D

q w j v j dx

≤ λ j

∫
D\R

|q| |w j| |v j|dx + λ j

∫
R

q |w j| |v j|dx

≤ λ j

⎡
⎢⎣ ∫

D\R

|q| |w j|2 dx

∫
D\R

|q| |v j|2 dx

⎤
⎥⎦

1/2

+ λ j

⎡
⎣∫

R

q |w j|2 dx

∫
R

q |v j|2 dx

⎤
⎦1/2

≤ λ j

√√√√∫
R

q |w j|2 dx

⎡
⎢⎣ρ j ‖q‖1/2∞ +

√√√√∫
R

q |v j|2 dx

⎤
⎥⎦
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where we used that 
∫

D\R |q| |v j |2 dx ≤ ‖q‖∞ . Therefore, we conclude that

√√√√∫
R

q |w j|2 dx ≤ λ j

1 − ρ j

⎡
⎢⎣ρ j

√‖q‖∞ +
√√√√∫

R

q |v j|2 dx

⎤
⎥⎦ .

Now we square and use the estimate (a + b)2 ≤ (
1 + 1/ρ j)a2 + (1 + ρ j)b2 = (1 + ρ j)

[
a2/ρ j + b2

]
for obvious meaning of a

and b. We arrive at∫
R

q |w j|2 dx ≤ (1 + ρ j)λ2
j

(1 − ρ j)
2

⎡
⎣ρ j ‖q‖∞ +

∫
R

q |v j|2 dx

⎤
⎦ . (2.14)

We substitute this for the right hand side of (2.13):

λ j

∫
R

(1 + q) |v j|2 dx ≤ 1 + ρ j

λ j

∫
R

q |w j|2dx ≤ (1 + ρ j)
2 λ j

(1 − ρ j)
2

⎡
⎣ρ j ‖q‖∞ +

∫
R

q |v j|2 dx

⎤
⎦

and thus∫
R

|v j|2 dx ≤ (1 + ρ j)
2

(1 − ρ j)
2
ρ j ‖q‖∞ +

(
(1 + ρ j)

2

(1 − ρ j)
2

− 1

)∫
R

q |v j|2 dx

︸ ︷︷ ︸
≤ ‖q‖∞

≤ (1 + ρ j)
2

(1 − ρ j)
2
ρ j ‖q‖∞ + 4ρ j‖q‖∞

(1 − ρ j)
2

≤ c1 ρ j

for some c1 > 0. From (2.14) and the observation that λ2
j ρ j → 0, we note that 

∫
R q |w j |2 dx tends to zero and thus 

also w j → 0 in L2(D) by Lemma 2.3. Finally, from the (2.13) and the assumption 1 + q ≥ q1 > 0, we conclude that 
q1λ

2
j ‖v j‖2

L2(D)
≤ ∫

D |q| |w j |2dx → 0; that is, λ j v j tends to zero in L2(D). Now we use the continuous dependence of the 
solution to �v j = λ j v j + qw j which yields that v j tends to zero in H2(D), a contradiction to ‖(v j, w j)‖X = 1. �

Therefore, as in the previous section we fix λ0 > 0 such that Aλ0 is an isomorphism and rewrite the equation 
Aλ(v, w) = 0 in the form

(v, w) + A−1
λ0

(Aλ − Aλ0)(v, w) = 0 .

The observation that Aλ − Aλ0 = (λ − λ0)K for some compact operator K yields discreteness of the spectrum. We formulate 
the result as a theorem.

Theorem 2.8. Let there exist q0 > 0 and some neighborhood R of ∂ D such that q ≥ q0 on R or q ≤ −q0 on R. Then the set of 
transmission eigenvalues is discrete. In C there is no (finite) accumulation point.
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