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We prove that the mixed André–Oort conjecture holds for any mixed Shimura variety if a 
lower bound for the size of Galois orbits of special points in pure Shimura varieties exists. 
This generalizes the current results for mixed Shimura varieties of Abelian type.
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r é s u m é

Nous démontrons la conjecture d’André–Oort pour toutes les variétés de Shimura mixtes, 
sous une borne inférieure pour la taille de orbites galoisiennes des points spéciaux. Ceci 
généralise les résultats connus pour les variétés de Shimura mixtes de type abélien.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The goal of this note is to clarify the situation of the study to the mixed André–Oort conjecture following the Pila–Zannier 
method developed in [11] (see also [17] for a more detailed survey). The main result is to remove the assumption “of Abelian 
type” in the known results.

Conjecture 1.1 (Mixed André–Oort). Let S be a mixed Shimura variety and let � be a set of special points in S. Then every irreducible 
component of the Zariski closure of � in S is a special subvariety.

Before proceeding, we introduce some notations: let (P , X ) be a mixed Shimura datum and let K be a compact open 
subgroup of P (A f ). Then the mixed Shimura variety MK (P , X ) is defined as

MK (P ,X ) := P (Q)\X × P (A f )/K .
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A special subvariety of MK (P , X ) is then defined to be an irreducible component of Y × {p} (the image of Y × {p} in 
MK (P , X )), where (Q , Y) is a mixed Shimura subdatum of (P , X ).

There is a number field E(P , X ) canonically associated with (P , X ), which is called the reflex field of (P , X ). Let 
π : (P , X ) → (G, XG) be the natural projection to the pure part of (P , X ). Then E(P , X ) = E(G, XG). Let KG = π(K ), then 
KG is an open compact subgroup of G(A f ). Denote by

ShKG (G,XG) := G(Q)\XG × G(A f )/KG

and [π] : MK (P , X ) → ShKG (G, XG). The varieties MK (P , X ), ShKG (G, XG) and the map [π] are all defined over E(P , X ) =
E(G, XG).

Let x ∈XG be any pre-special point, we shall denote by

(1) T := MT(x), which is a torus;
(2) KT := KG ∩ T (A f );
(3) K m

T the maximal compact subgroup of T (A f ) containing KT ;

(4) i(T ) := |{p| KT ,p �= K m
T ,p}|;

(5) Lx the splitting field of T ;

(6) Cl(T ) := T (Q)\T (A f )/T (Ẑ).

The main result is the following.

Theorem 1.2. Let MK (P , X ) be a mixed Shimura variety associated with the mixed Shimura datum (P , X ).
Assume that there exist positive constants c5, c6 , c7 , and c8 (depending only on (G, XG) and KG , the numbering in conformity 

with [2, Theorem 1.2]), such that for each pre-special point x ∈ XG , its image [x, 1] in the Shimura variety ShKG (G, XG) satisfies 
(Conjecture 1.3 below or)

|Gal(Q/E(G,XG)) · [x,1]| � c5ci(T )
6 [K m

T : KT ]c7 |disc Lx|c8 .

Then the mixed André–Oort conjecture (Conjecture 1.1) holds for MK (P , X ).

In order to prove the conjectural lower bound in Theorem 1.2, it suffices to prove the following conjecture, which is 
purely about class groups of tori.

Conjecture 1.3. Let ShKG (G, XG) be a pure Shimura variety and let x ∈XG be a pre-special point. Then there exist positive constants 
c and δ depending only on ShKG (G, XG) such that

|im(r̃T : Cl(Lx) → Cl(T ))| � cDδ
T

where r̃T is induced by the reciprocity morphism rT : ResLx/QGm,Lx → T and DT is the quasi-discriminant of T (see [13, Section 7.1 
and 3.5] or [16, Section 4.2 and 2.1.3] for definitions).

The fact that Conjecture 1.3 implies the conjectural lower bound in Theorem 1.2 is proved by Ullmo–Yafaev [16, Proposi-
tion 5.1] (also by Tsimerman [13, Theorem 7.1, Lemma 7.2] for the case Ag ). Also note that it suffices to prove Conjecture 1.3
for Ag and, for pure Shimura varieties of adjoint type, by the proof of Theorem 1.2 in §2. The conjectural lower bound is 
then proved unconditionally for Ag (g � 6) by Tsimerman [13] and under GRH for all pure Shimura varieties by Ullmo–
Yafaev [16]. So we get Theorem 1.4.

Theorem 1.4. The mixed André–Oort conjecture (Conjecture 1.1) holds under GRH for all mixed Shimura varieties, and it holds uncon-
ditionally for any mixed Shimura variety whose pure part is a subvariety of AN

6 for any positive integer N.

The proof is a combination of previous work of Pila–Tsimerman [9,10], Klingler–Ullmo–Yafaev [6], Ullmo [14], Gao [4], 
and the recent result of Daw–Orr [2]. The difference between Theorem 1.2 (and Theorem 1.4) and the previous result of Gao 
[4, Theorem 13.6] is that we can remove the “of Abelian type” assumption thanks to the recent work of Daw–Orr [2].1

2. Proof of the main result

Let us prove Theorem 1.2. We use the notation of Conjecture 1.1 and Theorem 1.2.

1 For the traditional proof (initiated by Edixhoven [3]) of Conjecture 1.1 for pure Shimura varieties assuming GRH by Klingler–Ullmo–Yafaev [15,7]
(simplified by Daw [1]), there is no generalization to the mixed case to my knowledge.



Z. Gao / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 659–663 661
Conjecture 1.1 is equivalent if we replace K by a neat subgroup. So we may assume that K is neat. Let Y be an irreducible 
component of �Zar

. Let X+ be a connected component of X . Remark that

MK (P ,X ) =
∐

p∈P (Q)+\P (A f )/K

�p\X+,

where �p = P (Q)+ ∩ pKp−1, and �p\X+ = X+ × {p} in MK (P , X ). Since Y is irreducible, there exists a p ∈ P (A f ) such 
that Y ⊂ X+ × {p}. The goal is to prove that there exists a mixed Shimura subdatum (Q , Y) of (P , X ) such that Y =
Y+ × {p}, where Y+ is a connected component of Y . Hence we may and do assume that p = 1.

Denote for simplicity �1 by � and S = �\X+ . Denote by unif : X+ → S . Then S is a connected mixed Shimura variety 
associated with the connected mixed Shimura datum (P , X+).

Replacing (P , X+) by the smallest connected mixed Shimura subdatum (Q , Y+) such that unif(Y+) contains Y and 
replacing S by S Q := unif(Y+) does not affect the correctness of Conjecture 1.1, so we do these replacements. Now by [4, 
Theorem 12.2], there exists a normal subgroup N � P such that for the diagram

(P ,X+)

unif

ρ
(P ′,X ′+) := (P ,X+)/N

unif′

S
[ρ]

S ′

• the union of positive-dimensional weakly special subvarieties of S ′ which are contained in Y ′ := [ρ]Y is NOT Zariski 
dense in Y ′;

• Y = [ρ]−1(Y ′).

The second bullet point tells us that Y is special iff Y ′ is special. By replacing (S, Y ) by (S ′, Y ′), we may assume that the 
union of positive dimensional weakly special subvarieties of S that are contained in Y is not Zariski dense in Y . So it suffices 
to prove the following claim:

Claim 1. The set of special points in Y which do not lie in any positive dimensional special subvariety is finite (recall that we are under 
the assumption that the union of positive dimensional weakly special subvarieties of S which are contained in Y is not Zariski dense 
in Y ).

Now let us do some reductions:

(1) replace P by MT(X+);
(2) by the Reduction Lemma [12, 2.26] and replacing � by a neat subgroup if necessary, we may furthermore assume that

(P ,X+) = (G0,D+) ×
r∏

i=1

(P2g,X+
2g)

where (G0, D+) is a pure Shimura datum, and that

� = �0 ×
r∏

i=1

{γ ∈ P2g(Z)|γ ≡ (0,1) mod N};

for some N > 3 even;
(3) replace (G0, D+) by its adjoint (Gad

0 , D+);
(4) finally replace (P , X+) by the smallest (Q , Y+) such that Y ⊂ unif(Y+).

Remark that Y is defined over a number field, which we call k, because it contains a Zariski dense subset of special 
points. Then E(G, XG) = E(P , X ) ⊂ k.

Now X+ ↪→ D+ × ∏r
i=1 X+

2g . So by [4, Proposition 4.3], we can identify X+ as a subspace of Cr × R2gr × (D+ × H+r
g ). 

Then any pre-special point is contained in

Qr ×Q2gr ×
(
D+ × (H+

g ∩ M2g(Q))r
)

.

Now let F be a fundamental set in X+ for the action of � on X+ as in [4, Section 10.1].
For any special point s ∈ S , take a representative ̃s ∈X+ in F . Write

s̃ = (̃sU , s̃V , x0, x1, . . . , xr)
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as the coordinates for Qr ×Q2gr ×
(
D+ × (H+

g ∩ M2g(Q))r
)

. Then by choice of F ,

H (̃sU ), H (̃sV ) 	 N(s), (2.1)

where N(s) is the smallest positive integer q such that q̃sU ∈ Zr and q̃sV ∈ Z2gr . Write for simplicity x = (x0, x1, . . . , xr) ∈
X+

G ⊂D+ × (H+
g ∩ M2g(Q))r . Use the notations of the Introduction (above Theorem 1.2), we have that any Ti := MT(xi) is a 

quotient of T (for all i = 0, 1, . . . , r). So, in particular,

• [K m
Ti

: KTi ] � [K m
T : KT ];

• i(Ti) � i(T );
• Lxi ⊂ Lx .

Now by Daw–Orr [2, Theorem 1.4] (for i = 0) and Pila–Tsimerman [9, Theorem 3.1] (together with Tsimerman [13, 
Lemma 7.2] for i = 1, . . . , r), for any positive real number c2, there exist positive constants c1, c3, c4 (depending only 
on ShKG (G, XG) and c2) such that

H(x) = max(H(x0), H(x1), . . . , H(xr)) � c1ci(T )
2 [K m

T : KT ]c3 |disc Lx|c4 . (2.2)

On the other hand, for the special point s ∈ S and for any ε > 0, there exists c(ε) > 0 such that (recall that E(G, XG ) =
E(P , X ) ⊂ k)

|Gal(Q/k)s| � c(ε)N(s)1−ε|Gal(Q/k) · [π]s| by Gao [4, Theorem 13.3]

= c(ε)N(s)1−ε|Gal(Q/k) · [x,1]|
� c(ε)c5N(s)1−εci(T )

6 [K m
T : KT ]c7 |disc Lx|c8 by assumption. (2.3)

Now (2.1), (2.2) and (2.3) assert that there exist positive constants δ0 and δ1 depending only on MK (P , X ) such that 
(remark that we can take in (2.2) c2 = c6)

|Gal(Q/k)s| � δ0 H (̃s)δ1 .

Hence for H (̃s) 
 0, Pila–Wilkie [8, 3.2] implies that there exists σ ∈ Gal(Q/k) such that σ̃ (s) is contained in a positive 
dimensional connected semi-algebraic subset Z̃ of X+ contained in unif−1(Y ) ∩ F . Let Z ′ be an irreducible component of 
unif( Z̃)

Zar
containing σ(s). Now the mixed Ax–Lindemann theorem (here we use the form [5, Theorem 3.7]) claims that 

Z ′ is weakly special, which is then special since it contains a special point σ(s). But dim Z ′ > 0 since dim Z̃ > 0. Hence 
σ−1(Z ′) is special of positive dimension. To sum it up, for any special point s ∈ Y with H (̃s) 
 0, s is contained in a 
positive dimensional special subvariety. Therefore the heights of the points in

{̃s ∈ unif−1(Y ) ∩F special and unif(̃s) not contained in any positive dimensional special subvariety}
is uniformly bounded, and hence this set is finite by Northcott’s theorem. Therefore we have proved Claim 1, and so 
Theorem 1.2.
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