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For mean field games with local coupling, existence results are typically for weak solutions 
rather than strong solutions. We identify conditions on the Hamiltonian and the coupling, 
which allow us to prove the existence of small, locally unique, strong solutions over 
any finite time interval in the case of local coupling; these conditions place us in the 
case of superquadratic Hamiltonians. For the regularity of solutions, we find that at each 
time in the interior of the time interval, the Fourier coefficients of the solutions decay 
exponentially. The method of proof is inspired by the work of Duchon and Robert on vortex 
sheets in incompressible fluids.
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r é s u m é

Pour les jeux à champ moyens avec couplage local, les résultats d’existence sont 
typiquement obtenus pour des solutions faibles plutôt que pour des solutions fortes. Nous 
identifions des conditions sur le Hamiltonien et sur le couplage qui nous permettent de 
démontrer l’existence d’une solution forte, petite et localement unique pour tout intervalle 
de temps fini dans le cas d’un couplage local ; ces conditions nous placent dans une 
situation de Hamiltonien super-quadratique. Pour la régularité des solutions, nous trouvons 
que, pour chaque point dans l’intérieur de l’intervalle de temps, les coefficients de Fourier 
des solutions décroissent exponentiellement. La preuve est inspirée par les travaux de 
Duchon et Robert sur les nappes de tourbillons de fluides incompressibles.
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1. Introduction

We study solutions to the Mean Field Games system in n spatial dimensions,

− ut − �u + H(t, x, Du) = F (t, x,m), (t, x) ∈ [0, T ] ×T
n, (1)

mt − �m − div
(
mH p(t, x, Du)

) = 0, (t, x) ∈ [0, T ] ×T
n. (2)

Here, t is the temporal variable, taken from the finite interval [0, T ], for some fixed T > 0. We have chosen spatially periodic 
boundary conditions, and thus the spatial variable x belongs to the n-dimensional torus, Tn . The function H is known as 
the Hamiltonian, with H p denoting ∂

∂ p H(t, x, p), the function F is known as the coupling, u is a value function arising from 
a specific application, and m is a probability distribution. The system (1), (2) is taken with the conditions

m(0, x) = m0(x), u(T , x) = G(x,m(T , x)), (3)

for a given payoff function, G . We will show that, in a suitably chosen function space, if m0 is chosen sufficiently close to 
a uniform distribution, then the system (1), (2), (3) has a (locally) unique strong solution. We mention that the smallness 
condition (on the perturbation of m from a uniform distribution) is independent of the size of the temporal horizon, T .

The theory of mean field games was introduced by Lasry and Lions, with the early papers on the subject being [7–9]; 
a recent survey is [6]. The topic of mean field games arises from game theory, in studying games with a large number of 
players. Approximating such systems with an infinite number of players, PDE models are arrived at, such as (1), (2) above. 
Existence results have been given, such as existence results for weak solutions [8,12]. Some existence results assume that the 
coupling function, F , is a nonlocal smoothing operator, such as a regularization by convolution, and this smoothing allows 
for the proof of existence of strong solutions. In the case of local coupling, to quote [12], “in general, only the existence of 
weak solutions whose regularity remains mostly an open question can be proved.”

Strong solutions have been shown to exist in the case of local coupling by Gomes, Pimentel, and Sánchez-Morgado in 
both the cases of subquadratic Hamiltonian [5] and superquadratic Hamiltonian [4]. The present work is complementary to 
[4] and [5]. In the present work, we find the existence of strong solutions in the case of local coupling and a superquadratic 
Hamiltonian; the differences with the work of Gomes et al. are that our assumptions on the Hamiltonian and related 
functions are simpler, at the expense that we only find small solutions. Furthermore, another significant difference is that 
for Gomes et al., the consideration of superquadratic or subquadratic concerns the behavior at infinity, while our focus on 
small solutions necessitates being concerned instead with behavior near the origin. We note that the boundary condition at 
time t = T used in [4], in which u(T , ·) is given explicitly, is more straightforward to treat than the implicit condition in (3).

In the present work, we study mean field games by way of an analogy with fluid mechanics. In incompressible fluid 
mechanics, the vortex sheet is famously known to have an ill-posed initial value problem [2,10,13]. This can be seen to be 
related to the fact that the evolution equations for the vortex sheet are elliptic in space-time; for elliptic equations, one 
should solve boundary value problems instead of initial value problems. A boundary value problem in space-time can be 
formed by specifying data at an initial time and at a final time. Indeed, this is the approach taken by Duchon and Robert 
for proving the existence of some vortex sheet solutions for all time [3]; they specified data at time t = 0, in addition to 
specifying zero data at T = ∞. In [11], the author and Milgrom have adapted the method of Duchon and Robert to finite 
time horizons, for both the vortex sheet and certain families of Boussinesq equations introduced by Bona, Chen, and Saut [1].

The Duchon–Robert methodology begins with the writing a Duhamel formula which integrates forward in time from 
time zero, and which integrates backwards in time from the final time. If Lipschitz estimates are satisfied by the nonlinear 
terms, then one is then able to use a contraction mapping argument to show that solutions exist. The function spaces used 
by Duchon and Robert use exponential weights, so that (in their case of an infinite time horizon), Fourier coefficients of the 
solutions decay exponentially, with the exponential decay rate increasing as time increases. In the present work, we follow 
these ideas, adapting the exponential weights to the case of a finite time horizon.

2. Formulation, functional setting, and assumptions

We define P to be the projection which removes the mean of a function on the torus; so, P f = f − 1
vol(Tn)

∫
Tn f (x) dx. 

Notice that the mean of u plays no role on the right-hand sides of (1) and (2). We define w = Pu, and we find the following 
evolution equation for w:

−wt − �w + PH(t, x, D w) = PF (t, x,m).

Since m is a probability measure at each time, its integral over the spatial domain will always be equal to one; notice 
that its integral is conserved by the evolution equation (2). The average value of m is therefore equal to m̄ = 1/vol(Tn). 
It will be helpful in what follows to subtract this from m; we define μ = m − m̄. We then have the following evolution 
equation for μ:

μt − �μ − div(μH p(t, x, D w)) − m̄ div(H p(t, x, D w)) = 0. (4)

This is taken with initial condition μ(0, ·) = μ0 := m0 − m̄. We define E(t, x, μ) by E(t, x, μ) = PF (t, x, μ + m̄). We may 
then rewrite the evolution equation for w:
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−wt − �w + PH(t, x, D w) = E(t, x,μ). (5)

This is taken with the terminal condition w(T , ·) = PG(·, m(T , ·)) = PG(·, μ(T , ·) +m̄) =: G̃(μ(T , ·)). Our system to be solved, 
then, is (4), (5).

We use the Duhamel formula for (4) (we note that we are solving for μ forward in time, beginning at t = 0). It is helpful 
to have some notation for the Duhamel integral; we define I+ to be the operator given by

(I+ f )(t, ·) =
t∫

0

e�(t−s) f (s, ·) ds.

Since we will also be integrating backwards from time T , we will need the operator I− , defined by

(I− f )(t, ·) =
T∫

t

e�(s−t) f (s, ·) ds,

in what follows. We then have the following Duhamel formula for μ:

μ(t, ·) = e�tμ0 + (I+ div(μH p(·, ·, D w)))(t, ·) + m̄(I+(div(H p(·, ·, D w))))(t, ·). (6)

We introduce the further notation IT as a special case of I+ , so that IT f = (I+ f )(T , ·). Evaluating (6) at time t = T , and 
introducing more notation, we have μ(T , ·) = A(μ, w), with

A(μ, w) = e�T μ0 + IT (div(μH p(·, ·, D w))) + m̄IT (div(H p(·, ·, D w))). (7)

For w , we write a Duhamel integral which integrates backward in time from T :

w(t, ·) = e�(T −t)w(T , ·) − I−(PH(·, ·, D w))(t) + I−(E(·, ·,μ))(t).

Using the boundary condition w(T , ·) = G̃(μ(T , ·)) = G̃(A(μ, w)), this becomes

w(t, ·) = e�(T −t)G̃(A(μ, w)) − I−(PH(·, ·, D w))(t) + I−(E(·, ·,μ))(t). (8)

We assume that the projection of the coupling can be expressed as

E(t, x,μ) = τμ + PU (t, x,μ), (9)

where τ is constant, and where U satisfies a Lipschitz condition to be specified below in (15). [For example, if the coupling 
were given by F (t, x, m) = m3, then we have PF (μ) = P(μ + m̄)3 = 3m̄2μ + P(3m̄μ2 + μ3); we take τ = 3m̄2 in this case 
and U (μ) = 3m̄μ2 + μ3.] Replacing E in (8) with (9), we have our Duhamel formula for w:

w(t, ·) = e�(T −t)G̃(A(μ, w)) − I−(PH(·, ·, D w))(t) + I−(PU (, ·, ·,μ))(t) + τ I−(μ)(t). (10)

We define a mapping, T , to be T (μ, w) = (T1, T2), with T1 and T2 given as follows:(
T1
T2

)
=

(
e�tμ0 + I+ div(μH p(·, ·, D w))(t) + m̄I+ div(H p(·, ·, D w))(t)

e�(T −t)G̃(A(μ, w)) − I−(PH(·, ·, D w))(t) + I−(PU (·, ·,μ)) + τ I−(T1)(t)

)
.

Here, we have used the right-hand side of (6) for the definition of T1. We have also used the right-hand side of (10) for the 
definition of T2, with the final μ being substituted using (6).

2.1. Function spaces

Let α ∈ [
0, T

2

)
be given. Define β : [0, T ] → [0, α] by

β(s) =
{

2αs/T , s ∈ [0, T /2],
2α − 2αs/T , s ∈ [T /2, T ].

For a function f defined on Tn , we denote the Fourier coefficients either by f̂ (k) or F f (k), with k ∈ Z
n .

For any j ∈N, we define B j to be the set of all functions g : Tn →R, of zero mean, such that |g| j < ∞, where

|g| j =
∑

k∈Zn\{0}
|k| j

∣∣ĝ(k)
∣∣ .

For any j ∈ N, we define the space B j
α to be the set of all f : [0, T ] × T

n → R, continuous in time with values in B j , such 
that ‖ f ‖ j < ∞, where
Bα
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‖ f ‖B j
α

=
∑

k∈Zn\{0}
sup

t∈[0,T ]
eβ(t)|k||k| j

∣∣∣ f̂ (t,k)

∣∣∣ .
Similarly to the corresponding spaces in [3], there is the algebra property

‖ f g‖B0
α

≤ ‖ f ‖B0
α
‖g‖B0

α
. (11)

This algebra property follows from the inequality, for k ∈ Z
n \ {0},∣∣∣eρ|k| f̂ g(k)

∣∣∣ ≤
∑

j

∣∣∣eρ|k− j| f̂ (k − j)
∣∣∣ ∣∣∣eρ| j| ĝ( j)

∣∣∣ ,
for any ρ ≥ 0. Taken with (11), the product rule then implies the algebra property for all j ∈ N: for any j ∈ N, there exists 
c j > 0 such that if f ∈ B j

α , g ∈ B j
α , then ‖ f g‖B j

α
≤ c j‖ f ‖B j

α
‖g‖B j

α
.

We can show that the operators I+ and I− are bounded linear operators from B j
α to B j+2

α , for any j ∈ N. The operator 
norms of each, denoted simply by ‖I+‖ and ‖I−‖, are bounded as follows:

‖I+‖ ≤ 2T

T − 2α
, ‖I−‖ ≤ 2T

T − 2α
;

these bounds are independent of j.

2.2. Assumptions

We make the following assumptions (which are primarily Lipschitz assumptions) on the Hamiltonian, H , on the coupling, 
U , and on the payoff function, G̃ .
(A1) G̃(0) = 0, and G̃ is Lipschitz in a neighborhood of the origin in B2; thus, there exists c > 0 such that for all a1, a2
sufficiently small in B2, we have

|G̃(a1) − G̃(a2)|2 ≤ c|a1 − a2|2. (12)

We make similar assumptions for H , H p , and for E , using the function spaces B j
α . However, we need these to be 

superlinear:
(A2) H(·, ·, 0) = H p(·, ·, 0) = 0. There exists a continuous function �1 : B2

α × B2
α → R such that as (w1, w2) → 0, we have 

�1(w1, w2) → 0, and such that

‖PH p(·, ·, D w1) − PH p(·, ·, D w2)‖B1
α

≤ �1(w1, w2)‖D w1 − D w2‖B1
α
. (13)

(We abuse notation slightly here; since H p(·, ·, D w) is an n-vector, it is measured in the space (B1
α)n , but we do not 

denote the norm of this space differently than B1
α .) There exists a continuous function �2 : B2

α × B2
α → R such that as 

(w1, w2) → 0, we have �2(w1, w2) → 0, and such that

‖PH(·, ·, D w1) − PH(·, ·, D w2)‖B0
α

≤ �2(w1, w2)‖D w1 − D w2‖B1
α
. (14)

There exists c > 0 such that the mean of H p (which we may denote by (I − P)H p(·, ·, D w)) satisfies

sup
t∈[0,T ]

|(I − P)H p(·, ·, D w)(t)| ≤ c‖w‖B2
α
,

for all w in a bounded subset of B2
α .

We note that the conditions (A2) are all satisfied if H is given by a superquadratic polynomial of D w , such as 
H(t, x, p1, . . . , pn) = a(t, x)pi p j p	 , for any i, j, 	 ∈ {1, . . . , n}, with a ∈B2

α . Another example is H(t, x, D w) = a(t, x)|D w|4.

Remark 1. Although an assumption that H is convex is traditional for mean field games, this property plays no role in the 
current proof, so we do not assume it.

(A3) U (·, ·, 0) = 0. There exists a continuous function �3 : B2
α ×B2

α → R such that as (μ1, μ2) → 0, we have �3(μ1, μ2) →
0, and such that

‖U (·, ·,μ1) − U (·, ·,μ2)‖B0
α

≤ �3(μ1,μ2)‖μ1 − μ2‖B2
α
. (15)

Note that in each of the assumptions (A1), (A2), and (A3), the mapping properties are implicit; for example, U maps B2
α

to B0
α .
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3. Existence and regularity of solutions

We will prove the existence of a solution by the contraction mapping theorem; we will show that T maps some X to 
itself with a contracting property. We let α ∈ (0, T

2 ) be given, and let μ0 ∈ B2 be given. We let X be the closed ball in 
B2

α × B2
α , centered at (a0, b0) = (e�tμ0, e�(T −t)G̃(e�T μ0) + τ I−(e�·μ0)(t)), with radius r∗ (the value of r∗ will be deter-

mined in what follows). Note that (a0, b0) can be made small by taking μ0 to be small.

3.1. T maps X to X

We begin by determining that T maps X to X ; this will require placing conditions on μ0 and on r∗ . We must first 
know that T maps X to B2

α ×B2
α . This follows from the condition α ∈ (0, T

2 ), the mapping properties of I+ and I− , and the 
assumptions of Section 2.2.

For the first component, T1, it is sufficient that the following inequality be satisfied:

‖I+ div(μH p(·, ·, D w))‖B2
α

+ m̄‖I+ div(H p(·, ·, D w))‖B2
α

≤ r∗
2

, (16)

for any (μ, w) ∈ X . We will show that we may choose μ0 and r∗ appropriately so that

m̄‖I+ div(H p(·, ·, D w))‖B2
α

≤ r∗
4

, (17)

and we will omit most other details. To begin, we use the mapping properties of I+ and the Lipschitz condition (13), with 
w ∈ X , to conclude

‖I+ div(H p(·, ·, D w))‖B2
α

≤ ‖H p(·, ·, D w)‖B1
α

≤ �1(w,0)‖w‖B2
α

≤ �1(w,0)
(
‖a0‖B2

α
+ ‖b0‖B2

α
+ r∗

)
≤ �

(
‖a0‖B2

α
+ ‖b0‖B2

α
+ r∗

)(
‖a0‖B2

α
+ ‖b0‖B2

α
+ r∗

)
, (18)

where �(r) = max‖w‖B2
α

≤r
|�1(w, 0)|, for r > 0. Then, if we choose μ0 and r∗ such that

�(‖a0‖B2
α

+ ‖b0‖B2
α

+ r∗) ≤ 1

8m̄
, ‖a0‖B2

α
+ ‖b0‖B2

α
≤ r∗,

then (17) is indeed satisfied. We note that for many other estimates of this section, the algebra properties described in 
Section 2.1 are also helpful.

For the second component, T2, it is sufficient that the following inequality be satisfied:

|G̃ A(μ, w) − G̃(e�T μ0)|2 + ‖I−PH(·, ·, D w)‖B2
α

+ ‖I−PU (·, ·,μ)‖B2
α

+ τ‖I− I+ div(μH p(·, ·, D w))‖B2
α

+ τm̄‖I− I+ div(H p(·, ·, D w))‖B2
α

≤ r∗
2

.

Using the Lipschitz estimate (12) and the definition (7), we have

|G̃ A(μ, w) − G̃(e�T μ0)|2 ≤ |IT div(μH p(·, ·, D w))|2 + m̄|IT div(H p(·, ·, D w))|2.
For any f ∈ B2

α , using the definition of IT and the fact that β(T ) = 0, we have

|IT f |2 =
∑

k∈Zn\{0}
eβ(T )|k|2|F((I+ f )(T ))(k)| ≤

∑
k∈Zn\{0}

sup
t∈[0,T ]

eβ(t)|k|2|F((I+ f )(t))(k)| = ‖I+ f ‖B2
α
.

Combining the above, to conclude the demonstration that T maps X to X , it is sufficient to show that

‖I+ div(μH p(·, ·, D w))‖B2
α

+ m̄‖I+ div(H p(·, ·, D w))‖B2
α

+ ‖I−PH(·, ·, D w)‖B2
α

+ ‖I−PU (·, ·,μ)‖B2
α

+ τ‖I− I+ div(μH p(·, ·, D w))‖B2
α

+ τm̄‖I− I+ div(H p(·, ·, D w))‖B2
α

≤ r∗
2

. (19)

It is again clear from the mapping properties of I+ and I− , and from (13), (14), and (15), that r∗ and μ0 can be chosen 
appropriately so that (19) will be satisfied.

3.2. Contraction estimate

We can demonstrate that if (μ1, w1) ∈ X and if (μ2, w2) ∈ X , then there exists λ ∈ (0, 1) such that

‖T (μ1, w1) − T (μ2, w2)‖B2
α

≤ λ
(
‖μ1 − μ2‖B2

α
+ ‖w1 − w2‖B2

α

)
.

This is accomplished very similarly to the estimates of Section 3.1, and is true for sufficiently small μ0 and r∗ . We omit the 
details.
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3.3. The main theorem

We are ready to state and prove our main theorem.

Theorem 1. Let T > 0 and α ∈ (0, T
2 ) be given. Let (A1), (A2), and (A3) be satisfied. There exists δ > 0 such that for all m0 such that 

(m0 − m̄) ∈ B2 with |m0 − m̄|2 < δ, there exists u such that Pu ∈ B2
α , and there exists m such that (m − m̄) ∈ B2

α , with u and m being 
a solution to (1), (2), (3), and such that m is a probability measure. Furthermore, for each t ∈ (0, T ), the Fourier coefficients of u(t, ·)
and m(t, ·) decay exponentially.

Remark 2. The value of δ need not go to zero as T increases; indeed, it is possible to run a version of this argument with 
T = ∞, as evidenced by the original Duchon–Robert argument [3].

Proof of Theorem 1. The contraction mapping theorem gives the existence of μ, w solving (4), (5). We let m = μ + m̄. 
From (3), we see that the mean of u(T , ·) should equal the mean of G(·, m(T , ·)). The mean of u can then be found by 
integrating (1) in space and in time, starting from time T . We conclude that u and m solve (1), (2), (3). That the Fourier 
coefficients decay exponentially at each time t ∈ (0, T ) follows from the fact that β(t) > 0 for t ∈ (0, T ) and from the 
inequality 

∑
k∈Zn\{0}

eβ(t)|k|| f̂ (t, k)| ≤ ‖ f ‖B0
α

, for any f ∈ B0
α . �
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