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A question by Paul Erdős about the existence of Gallai triangles in arrangements of d real 
lines in the projective plane, with no more than three lines incident to each vertex, is 
answered in the negative for all d higher than three.
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r é s u m é

La note répond négativement à une question posée par Paul Erdős concernant l’existence 
de triangles de Gallai dans les configurations de d droites réelles du plan projective, dans 
la situation où d > 3 et où au plus trois droites concourent en chaque sommet.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

A class of algebraic surfaces in the complex projective space with many ordinary double points as their only singularities 
was introduced in [5], in order to improve the lower bound [1] for the maximal number of singularities that an algebraic 
surface may have. They are based on certain bivariate polynomials that have been used also in the construction of algebraic 
surfaces with other kinds of singularities [6,7]. Real variants of the polynomials are associated with configurations of lines 
in the plane.

Let A be a configuration of d lines in the projective plane. The number of vertices of multiplicity (number of lines of A
incident to a vertex) j is denoted by t j(A).

Definition 1. A triangle in a line arrangement A is called a Gallai triangle if it is formed by three lines from A such that 
their three intersection points have multiplicity 2.

The following problem was formulated by Paul Erdős ([3,4], p. 818, [10]).

Erdős question. Let us suppose that an arrangement A has t j(A) = 0 for j higher than 3. Then does there exist a Gallai triangle 
in A?
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In [10], the authors constructed examples of arrangements of n lines, denoted by Bn , which showed that the answer is 
negative if n is at least four and not divisible by nine.

The folding polynomials of degree d, associated with the affine Weyl group of the root lattice A2, are defined for (z, w) ∈
C2 as F A2

d (z, w) := j1,d(z, w) + j2,d(z, w), where j2,d(z, w) = j1,d(w, z) and j1,d(z, w) satisfies the recursion relation

j1,d(z, w) = zj1,d−1(z, w) − w j1,d−2(z, w) + j1,d−3(z, w) (1)

with j1,1(z, w) = z, j1,2(z, w) = z2 − 2w, j1,3(z, w) = z3 − 3zw + 3.
In [8] real variants of the surfaces studied in [5] were constructed. They correspond to τ = 0 in the one-parameter family 

of degree d polynomials with real coefficients

Jd,τ (x, y) := ei(τ+ 2π
3 )̃ j1,d(x, y) + e−i(τ+ 2π

3 )̃ j2,d(x, y) + 2cos3τ (2)

where (x, y) ∈ R2, τ ∈ R, and ˜j1,d(x, y) = j1,d(x + iy, x − iy), ˜j2,d(x, y) =˜j∗1,d(x, y).

The critical points of Jd,τ (x, y) are determined by the critical points of Hd,τ (u, v) := 2cos(2πdu − 2π
3 − τ ) + 2cos(2πdv −

2π
3 − τ ) + 2cos(2πd(u + v) + 2π

3 + τ ), u, v ∈ R [9]. A basis of simple roots {α1, α2} for the root lattice A2 in the (u, v) plane 
is α1 = (2, 0), α2 = (−1, 

√
3). In [8] we showed that for τ = 0 the positions of the critical points of Hd,τ (u, v) + 2cos3τ

with critical value ζ = 0 are situated in the downscaled root lattice with basis {α1
6d , α1+α2

6d }. They determine a set of d

pseudolines whose images under the generalised cosine ˜h(u, v) := (cos(2π(u + v)) + cos(2πu) + cos(2πv), sin(2π(u + v)) −
sin(2πu) − sin(2πv)) are the lines in the (x, y) plane defining Jd,0(x, y). The results in [8] can be extended by taking 
into account the positions of the corresponding critical points of Jd,τ (x, y) [9]. We get the lines Md,τ ,ν(x, y) = 0, ν =
−� d−2

2 �, −� d−2
2 � + 1, . . . , � d+1

2 � with

Md,τ ,ν(x, y) := y − (x − cos(
2π
d

(
6ν − 1

6
− τ

π
)))tan(

π
d

(
6ν − 1

6
− τ

π
)) + sin(

2π
d

(
6ν − 1

6
− τ

π
)) (3)

The polynomials given in eq. (2) are formed by the union of the lines in eq. (3), up to a normalising factor [9].
The lines Ld,k,ν (x, y) := Md,(2k+1) π

6 ,ν (x, y), k = 0, 1, . . . , 5 have the parametric equations

z = e−i2πu + teiπu, t ∈ R (4)

with u = 3ν−k−1
3d . For the values of τ = (2k + 1) π

6 corresponding to k = 0, 1, . . . , 5, the polynomials Jd,τ (x, y) have all the 
minima and maxima with the same absolute value (see Theorem 2.2 in [9]) and correspond to simplicial arrangements in 
the affine plane (all the bounded cells are triangles, as in Fig. 1). However for our purposes it is enough to study the cases 
k = 0, 2. We consider the configurations of d > 3 lines

Ad,k := {Ld,k,ν = 0}ν∈S (5)

where S := {−m + 1, −m + 2, . . . , m + 1} if d = 2m + 1 and S := {−m + 1, −m + 2, . . . , m} if d = 2m.

Lemma 1.
1. Each line in Ad,k intersects each other line.
2. Ld,k,ν1 ∩ Ld,k,ν2 ∩ Ld,k,ν3 �= ∅ iff ν1 + ν2 + ν3 ≡ k + 1 (mod d), ∀Ld,k,ν1 , Ld,k,ν2 , Ld,k,ν3 ∈ Ad,k.
3. There is no vertex of multiplicity higher than 3 in Ad,k.

Proof. 1. The incidence condition in order to have Ld,k,ν1 ∩ Ld,k,ν2 �= ∅ is ν1−ν2
d /∈ Z, which is always true because max|ν1 −

ν2| = d − 1, ∀ν1, ν2 ∈ S .
2. The lines Ld,k,ν1 , Ld,k,ν2 , Ld,k,ν3 ∈ Ad,k with ul = 3νl−k−1

3d are concurrent iff cosπ(2u2 + u1) = cosπ(2u3 + u1), namely 
when π(2u2 + u1) = −π(2u3 + u1) + 2nπ, n ∈ Z or, equivalently, ν1 + ν2 + ν3 ≡ k + 1 (mod d).

3. We assume that there are already three lines concurrent to a vertex, therefore u1 + u2 + u3 = n1 ∈ Z. If the multiplicity 
of the vertex is 4 then there exists u4 such that u1 +u2 +u4 = n2 ∈ Z and u1 +u3 +u4 = n3 ∈ Z, hence u2 −u3 = n2 −n3 ∈ Z, 
which is not possible. �
Lemma 2. For ν0, ν1 ∈ S, ν0 �= ν1 , we have 2ν0 + ν1 ≡ k + 1 (mod d) iff Ld,k,ν0 ∩ Ld,k,ν1 is a vertex of multiplicity 2.

Proof. We assume 2ν0 +ν1 ≡ k + 1 (mod d) and we choose ν j ∈ S \ {ν0, ν1}. Therefore ν0 +ν1 +ν j ≡ k + 1 +ν j −ν0 �≡ k + 1
(mod d) because if ν j > ν0 then 1 ≤ ν j − ν0 ≤ d − 1 and if ν j < ν0 then 1 − d ≤ ν j − ν0 ≤ −1. This proves the first part of 
the lemma.

For the second part we assume 2ν0 + ν1 �≡ k + 1 (mod d) (and therefore also 2ν1 + ν0 �≡ k + 1 (mod d)). We have two 
possibilities (mod d)

(a) 2ν0 + ν1 < k + 1:
In this case ∃l = 1, 2, . . . , k + m with d = 2m or d = 2m + 1 such that 2ν0 + ν1 ≡ k + 1 − l (mod d) and we have 

ν0 + ν1 + νl ≡ k + 1 (mod d), with νl = ν0 + l ∈ S \ {ν0, ν1} (mod d).
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Fig. 1. The configuration of lines A18,0.

(b) k + 1 < 2ν0 + ν1:
Now 2ν0 +ν1 ≡ k + 1 + l (mod d), l = 1, 2, . . . , t with t = m −k if d = 2m + 1 or t = m −k − 1 if d = 2m and ν0 +ν1 +νl ≡

k + 1 (mod d), with νl = ν0 − l ∈ S \ {ν0, ν1} (mod d).
In both cases we would get a vertex of multiplicity 3. �
In the sequel we will use the following well-known results (see for instance [2], p. 122 about linear congruences).

Proposition 1. If gcd(a, d) = 1, then the linear congruence ax ≡ b (mod d) has exactly one solution modulo d.

By using the Euclid’s algorithm it can be shown that if gcd(a, d) = m then there are two integers s and t such that m =
as + dt (Bézout’s identity). Therefore when m = 1, the solution to ax ≡ b (mod d) is x = bs.

Proposition 2. If gcd(a, d) = m, then the congruence ax ≡ b (mod d) has solution iff m|b. In that case there are exactly m solutions 
modulo d which can be written as x1, x1 + d1, . . . , x1 + (m − 1)d1 , where d = md1 and x1 is the solution to the congruence a1x ≡ b1
(mod d1), a = ma1 , b = mb1 .

Now we can get the main result of this article:

Theorem 1. The configurations of lines Ad,k in the following cases have no Gallai triangles:
1. d = 3q + 1, q = 1, 2, 3, . . . ; k = 0
2. d = 3q + 2, q = 1, 2, 3, . . . ; k = 0
3. d = 9n, n = 1, 2, 3, . . . ; k = 0
4. d = 3q, q �= 3n, q, n = 1, 2, 3, . . . ; k = 2
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Proof. 1. According to Lemma 2 there is a Gallai triangle for k = 0 when we can find ν0 �≡ ν1 �≡ ν2 (mod d) such that 
2ν0 + ν1 ≡ 2ν1 + ν2 ≡ 2ν2 + ν0 ≡ 1 (mod d) and as a consequence 9ν0 ≡ 3 (mod d), 36ν1 ≡ 12 (mod d), 18ν2 ≡ 6 (mod d).

The equation 9ν0 ≡ 3 (mod 3q + 1) has a unique solution because gcd(9, 3q + 1) = 1. The solution is ν0 ≡ −q (mod 
3q + 1), but �ν1 �≡ ν0 (mod 3q + 1) satisfying 2ν0 + ν1 ≡ 1 (mod 3q + 1) therefore there is no Gallai triangle.

2. Now gcd(9, 3q + 2) = 1 and the unique solution to 9ν0 ≡ 3 (mod 3q + 2) is ν0 ≡ q + 1 (mod 3q + 2). Again there is no 
solution for ν1 �≡ ν0 of 2ν0 + ν1 ≡ 1 (mod 3q + 2).

3. gcd(9, 9n) = 9 but 9 does not divide 3 therefore 9ν0 ≡ 3 (mod 9n) has no solution according to Proposition 2. Alter-
natively if d = 9n, then we must have 3(ν0 − n · l) = 1 for some l ∈ Z, which is not possible. The configuration of lines A18,0
can be seen in Fig. 1.

4. A consequence of 2ν0 + ν1 ≡ 2ν1 + ν2 ≡ 2ν2 + ν0 ≡ 3 (mod d) is 9ν0 ≡ 9 (mod d), 36ν1 ≡ 36 (mod d), 18ν2 ≡ 18
(mod d). For k = 2 we analyse 9ν0 ≡ 9 (mod d). When d = 3q, q �= 3n, we have gcd(9, d) = 3 and 3|d. There are exactly three 
solutions: ν0 ∈ {1 − q, 1, 1 + q}, which are also solutions (not the only ones) of 36ν1 ≡ 36 (mod d), 18ν2 ≡ 18 (mod d). But 
they can not be the vertices of a Gallai triangle because if {ν0, ν1, ν2} = {1 − q, 1, 1 + q} then ν0 + ν1 + ν2 ≡ 3 (mod d) (see 
Lemma 1). On the other hand �ν ′

1 �≡ ν0 such that 2ν0 + ν ′
1 ≡ 3 (mod d) with ν0 ∈ {1 − q, 1, 1 + q}. �

There are other examples with different values of k without Gallai triangles, but the results of Theorem 1 are sufficient 
to answer the Erdős question: for each integer d ≥ 4 there are configurations of d lines in the plane with no more than 
three lines incident to each vertex and having no Gallai triangles.

References

[1] S.V. Chmutov, Examples of projective surfaces with many singularities, J. Algebraic Geom. 1 (1992) 191–196.
[2] A. Córdoba, La saga de los números, Ed. Crítica, Madrid, 2006.
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