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Let M be a random symmetric real p-matrix of Wishart distribution with k degrees of 
freedom and scale parameter �. The distribution of M can usually be characterized by 
the distribution of (tu1 Mu1, . . . , tup Mup), for any �-orthogonal basis (u1, . . . , up) of Rp . 
We propose to weaken this characterization, showing that, when k < p, it is sufficient to 
know the distribution of (tu1 Mu1, . . . , tuk+1 Muk+1).

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Soit M une p-matrice aléatoire réelle symétrique de loi de Wishart à k degrés de 
liberté et de paramètre d’échelle �. On peut caractériser la loi de M par la loi de 
(tu1 Mu1, . . . , tup Mup), pour toute base �-orthogonale (u1, . . . , up) de Rp . Nous proposons 
une caractérisation plus faible de la loi de M , montrant que, si k < p, il suffit de connaître 
la loi de (tu1 Mu1, . . . , tuk+1 Muk+1).

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In multivariate statistics, the quadratic forms issued from Gaussian random variables (r.v.’s) lead implicitly to the Wishart 
distribution. Representation and characterization of Wishart random matrices is being the object of many works for different 
uses, as, for example, the computation of moments [3], or time series modeling [6]. A large discussion on the dimension 
in multivariate models can be found in [1]. This work can be especially useful in a context of large dimension, as the 
characterization of the Wishart distribution can be weakened in a reduced dimension.
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We will denote by ta the transpose of any real matrix (or real vector) a. Let p be a strictly positive integer. The identity 
p-matrix is denoted I p and the columns of I p denoted e1, . . . , ep . The distribution of any random variable U (real, vector or 
matrix) will be denoted L(U ).

Classically, a Wishart distribution can be defined as follows [2].

Definition 1.1. Let X be a random (k, p)-matrix of k Gaussian rows, centered, identically distributed, independent, of co-
variance matrix �. The distribution of t X X is named Wishart distribution with k degrees of freedom and with scale 
parameter �. This distribution is denoted W(k, �).

The second part of this paper will introduce a characterization of the Wishart distribution. The four following paragraphs 
will expose tools in order to weaken this characterization, that is, respectively, an extension of the Cholesky decomposition, 
the Haar measure, the Gaussian random matrices, and the Wishart distribution. Finally, the seventh paragraph will conclude 
with the main announced result.

2. A characterization of Wishart matrices by quadratic forms

When M is a random p-matrix of Wishart distribution W (k, �), for any vector u such that t uSu = 1, the random 
variable t uMu is chi-square distributed and for any vectors u, v such that t uS v = 0, the random variables t uMu and t v M v
are independent [5]. We will use these properties to characterize a Wishart distribution.

Theorem 2.1. Let k and p be strictly positive integers, M be a random symmetric p-matrix and � be a non-null symmetric semi-definite 
positive p-matrix. Then L(M) =W(k, �) if and only if the following properties are verified:

(a) if u is a p-vector such that tu� u = 0, then tuMu = 0;
(b) if u is a p-vector such that tu� u �= 0, then L(

tuMu
tu�u ) = χ2(k) (chi-square distribution with k degrees of freedom);

(c) if (u1, . . . , up) is a �-orthogonal p-basis, then the r.v.’s tu1Mu1 , . . . , tup Mup are independent.

The proof of this theorem needs the two following lemmas.

Lemma 2.1. Let p′ = rank(�). There exists a non-singular p-matrix A such that, if p′ = p, t A� A = I p , and if p′ < p, t A� A =(
I p′ 0p′,p−p′

0p−p′,p′ 0p−p′,p−p′

)
, where 0i, j is the null (i, j)-matrix, for any strictly positive integers i and j. Furthermore, L(M) =W(k, �)

if and only if L(t AM A) =W(k, t A� A).

Proof. We obtain the columns of A exchanging and normalizing vectors of any �-orthogonal p-basis. �

Lemma 2.2. If properties (a) and (b) of Theorem 2.1 are satisfied and if � =
(

I p′ 0p′,p−p′
0p−p′,p′ 0p−p′,p−p′

)
, then M is of type (

M ′ 0p′,p−p′
0p−p′,p′ 0p−p′,p−p′

)
, where M ′ is a random symmetric p′-matrix. Furthermore, L(M) = W(k, �) if and only if L(M ′) =

W(k, I p′ ).

Proof. Suppose that (a) and (b) are satisfied. Let Mi, j be the (i, j)th term of M , where j �= i and j > p′ . Property (a)
implies M j, j = 0. From properties (a) and (b), we have L(t(ei + e j)M(ei + e j)) = L(t(ei − e j)M(ei − e j)) = L(Mi,i) and 
L(Mi,i + 2Mi, j) = L(Mi,i − 2Mi, j) = L(Mi,i). The mathematical expectation of Mi, j , the covariance of (Mi,i, Mi, j), and the 
variance of Mi, j are null. So Mi, j = 0. �
Proof of Theorem 2.1. Properties (a), (b) and (c) are obviously necessary. Suppose now that they are verified. If � = I p , 
then they fix the characteristic function f of M . Indeed, let m be a symmetric p-matrix, and m = rdtr its spec-
tral decomposition, where d is a diagonal matrix diag(α1, . . . , αp), and r = (r1| . . . |rp) is an orthogonal p-matrix. Then 
f (m) = E(exp(trace(im M))) = �

p
j=1E(exp(iα j

tr j Mr j)).
In the general case, from the previous and from Lemmas 2.1 and 2.2, L(M) =W(k, �). �
We will show that, if p > k, this set of properties remains a necessary and sufficient condition if we replace the third 

property by the following:

(c′) for any �-orthogonal free family (u1, . . . , uk+1) of p-vectors, the r.v.’s tu1Mu1, . . . , tuk+1Muk+1 are independent.
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3. An extension of the Cholesky factorization

Any definite positive symmetric matrix σ is factorizable in a unique way as σ = tττ , where τ is a triangular upper 
matrix with strictly positive diagonal terms. This is the Cholesky factorization. We will denote τ = Chol(σ ).

Let q ∈ {1, . . . , p}. For any (p, q)-matrix μ of rank q, the Schmidt orthonormalization process applied to the columns of μ
leads to the matrix μ(Chol(tμμ))−1, which we denote Schmidt(μ). This matrix is such that tSchmidt(μ)Schmidt(μ) = Iq .

We will need the following property.

Property 3.1. Let a be a (p, k)-matrix and let q = rank(a). There exists a (p, q)-matrix r and a (q, k)-matrix b such that a = rb and 
trr = Iq .

Proof. We extract a free q-family (μ1, . . . , μq) among the columns of a. Each one of the k columns of a is a linear com-
bination of the μ j ’s. So, setting μ = (μ1| . . . |μq), there exists a (q, k)-matrix ν such that a = μν . Then a = rb, where 
r = Schmidt(μ) and b = (Chol(tμμ))ν . �

Let p′ = min(k, p) and S(k, p) be the set of the symmetric p-matrices whose upper left p′-block is definite positive. 
We can now define on S(k, p) an application Cholk such that Cholk = Chol when k = p.

Definition 3.1. Let m be a matrix of S(k, p). We define the k-extended Cholesky factor of m and denote it Cholk(m), accord-
ing to the following way:

if k < p, there exists a non-singular k-matrix a, a (k, p − k)-matrix b and a (p − k)-matrix c such that m =
(

taa tab
tba c

)
; 

then Cholk(m) = tSchmidt(a)(a|b); this definition is intrinsic: tSchmidt(a)(a|b) = (Chol(taa)|t((Chol(taa))−1)tab);
if k = p, then Cholk(m) = Chol(m);

if k > p, then Cholk(m) =
(

Chol(m)

0k−p,p

)
.

Property 3.2. Let m be a matrix of S(k, p). Then tCholk(m)Cholk(m) = m if and only if there exists a (k, p)-matrix x such that txx = m.

4. The Haar measure

Let O(k) be the compact group of the orthogonal k-matrices, and ξ be its Borel σ -field.
The following property is a recall of what can be found in [4].

Property 4.1. There exists a unique probability measure μ on O(k), which is left-translation-invariant: μ(U E) = μ(E), for any U of 
O(k) and E of ξ . It is named the Haar probability measure, and it is also right translation invariant.

With this property, we can define the Haar-type matrices of O(k).

Definition 4.1. If R is a random matrix taking values in O(k) (r.o. k-matrix), then we say that R is of Haar-type (H.r.o.) if its 
distribution is the Haar probability measure, i.e. if and only if the two propositions, which are equivalent, are satisfied:

i) For any s of O(k), L(sR) =L(R).
ii) For any s of O(k), L(Rs) =L(R).

We will need the following trivial property of the H.r.o. matrices.

Property 4.2. Let R be a H.r.o. k-matrix. For any r.o. k-matrix S independent of R, R S and S R are H.r.o. k-matrices and are independent 
of S.

5. The Gaussian random matrices

Let us first recall the definition of a Gaussian vector and a Gaussian matrix.

Definition 5.1. A random p-vector U is said to be Gaussian if, for any p-vector u, the random variable tuU is Gaussian.

Definition 5.2. A random (k, p)-matrix X is said to be Gaussian if the random kp-vector of its terms is Gaussian.
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This lets us deduce the following.

Property 5.1. A random (k, p)-matrix X is Gaussian if and only if, for any (p, k)-matrix a, the random variable trace(Xa) is Gaussian.

In particular, we will consider random (k, p)-matrices whose terms are independent and identically distributed as cen-
tered and reduced Gaussian r.v.’s. We will denote by SN(k, p) their distribution.

Property 5.2. Let r be a matrix of O(k) and X a random SN(k, p)-matrix. Then L(r X) = SN(k, p).

Proof. The columns Xi of X are independent and isotropic, i.e. such that L(r Xi) =L(Xi). Hence, L(r X) =L(X). �
Property 5.3. The rank of any random SN(k, p)-matrix is min(k, p).

Proof. The rank of any q-family of almost surely non-null independent isotropic random q-vectors is q. �
6. The Wishart distribution W(k, I p)

In this part, we suppose that M is a random W(k, I p)-matrix, according to Definition 1.1.

Property 6.1. Cholk(M) is well defined and tCholk(M)Cholk(M) = M.

Proof. From Property 5.3, for any random SN(k, p)-matrix X , Cholk(t X X) is well defined; moreover, tCholk(t X X)Cholk(t X X)

= t X X . �
Property 6.2. If Y is a random (k, p)-matrix such that t Y Y = M, then, for any H.r.o. matrix R independent of Y , L(RY ) = SN (k, p).

Proof. We first show this property for Y = Cholk(M).
Let suppose that there exists a random SN (k, p)-matrix X such that M = t X X .
If p ≥ k, let X ′ be the random k-matrix of the k first columns of X . If p < k, let X ′ be the random matrix X completed 

by a random SN (k, k − p)-matrix independent of X .
In both cases, L(X ′) = SN (k, k). From Property 5.3, rank(X ′) = k. Let T be the r.o. k-matrix Schmidt(X ′). Then tT X = Y . 

For any orthogonal k-matrix s, from Property 5.2, L(sT Y ) = L(sX) = L(X). Since for any orthogonal k-matrix s, L(sT Y ) =
SN (k, p), for any r.o. k-matrix S independent of T Y = X , L(ST Y ) = SN (k, p).

Let S be a H.r.o. k-matrix independent of (X, T ). Then ST is independent of (X, T ) and hence of M = t X X , because 
for any possible value (x, t) of (X, T ), L(ST /(X, T ) = (x, t)) = L(St/(X, T ) = (x, t)) = L(St) = L(S). We have found a H.r.o. 
k-matrix R = ST independent of M such that L(RY ) = SN (k, p).

Now we are able to deal with the general case. Let Y be a random (k, p)-matrix such that tY Y = M and R be a H.r.o. 
k-matrix independent of Y . In the same way as we above obtained from X a r.o. k-matrix T such that tT X = Cholk(M), 
we can obtain from Y a r.o. k-matrix T ′ such that tT ′Y = Cholk(M), with (Y , T ′) independent of R . In the same way as 
ST was independent of M , RT ′ is independent of M . Then, from the beginning of the proof, L(RY ) = L(RT ′Cholk(M)) =
SN (k, p). �

We have now the tools to weaken the characterization of the Wishart distribution.

7. A weak characterization of Wishart matrices

Let k and p be two integers such that 0 < k < p, and let M be a random symmetric p-matrix such that:

(i) for any unit p-vector u, L(tuMu) = χ2(k);
(ii) for any orthonormal (k + 1)-family of p-vectors (u1, . . . , uk+1), the r.v.’s tu1Mu1, . . . , tuk+1Muk+1 are independent.

Property 7.1. Let q be an integer such that 1 ≤ q ≤ k + 1. For any (p, q)-matrix r such that trr = Iq , L(trMr) =W(k, Iq).

Proof. The symmetric random q-matrix trMr has the characteristic properties of a Wishart matrix as it has been presented 
in Theorem 2.1. �
Property 7.2. Cholk(M) is well defined and tCholk(M)Cholk(M) = M.
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Proof. From Property 7.1, L(t(e1| . . . |ek)M(e1| . . . |ek)) = W(k, Ik). From Property 5.3, Cholk(M) is well defined. Let denote 
Cholk(M) by Y = (Y1| . . . |Y p).

For q ∈ {k + 1, . . . , p}, let M ′ = t(e1| . . . |ek|eq)M(e1| . . . |ek|eq). From Property 7.1, L(M ′) = W(k, Ik+1). Moreover, 
(Y1| . . . |Yk|Yq) = Cholk(M ′); so, from Property 6.1, tYqYq = teq Meq . For k + 1 ≤ q < q′ ≤ p, let f = 1√

2
(eq + eq′) and 

F = Y f = 1√
2
(Yq + Yq′). In the same way as tYqYq = teq Meq , t F F = t f M f ; so tYqYq′ = teq Meq′ . We conclude: tY Y = M . �

Property 7.3. L(M) =W(k, I p).

Proof. Let Y = Cholk(M) = (Y1| . . . |Y p), let R be a H.r.o. k-matrix independent of Y and let X = RY = (X1| . . . |Xp).
Let a be a non-null (p, k)-matrix and let q = rank(a). Using Property 3.1, we can write a = rb, where trr = Iq , and, from 

Property 7.1, L(trMr) = W(k, Iq). Properties 6.2 and 5.1 imply respectively L(Xr) = L(RY r) = SN(k, q) and that trace(Xrb)

is Gaussian. Since for any (p, k)-matrix a trace(Xa) is Gaussian, X is Gaussian.
From Property 7.1, for any (i, j) such that 1 ≤ i < j ≤ p, L(t(ei |e j)M(ei |e j)) = W(k, I2). Then, as t(ei |e j)M(ei |e j) =

t(Yi |Y j)(Yi |Y j), Property 6.2 implies L((Xi |X j)) = L(R(Yi |Y j)) = SN (k, 2). So all the terms of X are centered, reduced, 
Gaussian r.v.’s of null covariances, hence independent. Then L(X) = SN (k, p) and L(M) =W(k, I p). �

From Property 7.3, Lemma 2.1 and Lemma 2.2, we obtain the main result of our work.

Theorem 7.1. Let k and p be two strictly positive integers, q = min(k +1, p), M be a random symmetric p-matrix, and � be a non-null 
semi-definite positive symmetric p-matrix. Then L(M) =W(k, �) if and only if the following properties are all satisfied:

• if u is a p-vector such that tu�u = 0, then tuMu = 0;
• if u is a p-vector such that tu�u �= 0, then L(

tuMu
tu�u ) = χ2(k);

• if (u1, . . . , uq) is a �-orthogonal free q-family, then the r.v.’s tu1Mu1, . . . , tuq Muq are independent.
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