Number theory

On the distribution modulo 1 of the sum of powers of a Salem number

Sur la répartition modulo 1 de la somme des puissances d'un nombre de Salem

Dragan Stankov
Katedra Matematike RGF-a, University of Belgrade, Beograd, Đušina 7, Serbia

ARTICLE INFO

Article history:

Received 1 February 2016
Accepted after revision 17 March 2016
Available online 14 April 2016
Presented by Jean-Pierre Serre

Abstract

It is well known that the sequence of powers of a Salem number θ, modulo 1 , is dense in the unit interval, but is not uniformly distributed. Generalizing a result of Dupain, we determine, explicitly, the repartition function of the sequence $\left(P\left(\theta^{n}\right) \bmod 1\right)_{n \geq 1}$, where P is a polynomial with integer coefficients and θ is quartic. Also, we consider some examples to illustrate the method of determination.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Rés U M É

Il est bien connu que la suite des puissances d'un nombre de Salem θ, modulo 1 , est dense dans l'intervalle unité, sans être uniformément distribuée. Généralisant un résultat de Dupain, on détermine explicitement la fonction de répartition de la suite $\left(P\left(\theta^{n}\right) \bmod 1\right)_{n \geq 1}$, où P est un polynôme à coefficients entiers et θ est quartique. On illustre également la méthode de détermination par quelques exemples.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Studying the distribution modulo 1 of the powers of a fixed real number θ greater than 1 has been of interest for some time. In his monograph [7], Salem considered certain special algebraic integers. For instance, he showed that the sequence $\left(\theta^{n}\right)_{n \geq 1}$ tends to zero in \mathbb{R} / \mathbb{Z} when θ is a Pisot number. If θ is a Salem number then $\left(\theta^{n}\right)_{n \geq 1}$ is dense in \mathbb{R} / \mathbb{Z}, i.e. the fractional parts of θ^{n} are dense in the unit interval [0, 1], but are not uniformly distributed. (See [2], pp. 87-89.) Moreover, Salem numbers are the only known numbers whose powers are dense in \mathbb{R} / \mathbb{Z}. A Pisot number is a real algebraic integer greater than 1 whose other conjugates have modulus less than 1 . A Salem number is a real algebraic integer greater than 1 whose other conjugates have modulus less than or equal to 1 and a conjugate with modulus one. It is easy to see that a

[^0]Salem number θ has one conjugate, namely θ^{-1}, inside the unit disc, while the others are on the boundary. The degree, say $2 t$, of θ is even and is at least 4 . Throughout, we will use the following notation where x and x^{\prime} designate real numbers:
(i) the integer part function: $[x]=\max \{n \in Z: n \leq x\}$,
(ii) the fractional part function: $\{x\}=x-[x]$,
(iii) congruence modulo $1: x \equiv x^{\prime} \bmod 1 \Leftrightarrow x-x^{\prime} \in \mathbb{Z}$,
(iv) distance from x to the nearest integer: $\|x\|=\min \{|x-n|: n \in \mathbb{Z}\}$.

Definition 1.1. Let $\left(u_{n}\right)_{n \geq 1}$ be a sequence of real numbers and let $x \in[0,1]$. Then, the quantity $f(x)=\lim _{N \rightarrow \infty} \frac{\operatorname{card}\left\{n<N \mid\left\{u_{n}\right\}<x\right\}}{N}$, when it exists, is called the repartition function (also called the asymptotic distribution function [3]) of the sequence $\left(u_{n}\right)_{n \geq 1}$ evaluated at x.

Here, we consider only those x for which $f(x)$ and its derivative $f^{\prime}(x)$, called the density function, exist, i.e. almost everywhere.

From now on, suppose that θ is a Salem number, $u_{n}=P\left(\theta^{n}\right)$, where $P(x)$ is a polynomial with integer coefficients. Denote conjugates of θ by $\theta^{-1}, \exp \left(\pm 2 i \pi \omega_{1}\right), \ldots, \exp \left(\pm 2 i \pi \omega_{t-1}\right)$. Since the sum of an algebraic integer and its conjugates is an integer, for all $n \in \mathbb{N}, \theta^{n}+\theta^{-n}+2 \sum_{j=1}^{t-1} \cos 2 \pi n \omega_{j} \equiv 0(\bmod 1)$ so that the distribution of $\theta^{n}(\bmod 1)$ is essentially that of $-2 \sum_{j=1}^{t-1} \cos 2 \pi n \omega_{j}$.

If θ is a quartic Salem number, Dupain [5] explicitly determined the repartition function for $\left(\theta^{n}\right)_{n \geq 1}$, modulo 1. Namely,

$$
f(x)=\frac{5}{2}-\frac{1}{\pi}\left(\arccos \frac{x-2}{2}+\arccos \frac{x-1}{2}+\arccos \frac{x}{2}+\arccos \frac{x+1}{2}\right)
$$

It follows that

$$
f^{\prime}(x)=\frac{1}{2 \pi}\left(\frac{1}{\sqrt{1-\left(\frac{x-2}{2}\right)^{2}}}+\frac{1}{\sqrt{1-\left(\frac{x-1}{2}\right)^{2}}}+\frac{1}{\sqrt{1-\left(\frac{x}{2}\right)^{2}}}+\frac{1}{\sqrt{1-\left(\frac{x+1}{2}\right)^{2}}}\right)
$$

If θ is a Salem number of degree $2 t, t \geq 2$, Doche, Mendès France and Ruch [4] determined the density function for $\left(\theta^{n}\right)_{n \geq 1}$, modulo 1:

$$
\begin{equation*}
f^{\prime}(x)=1+2 \sum_{k=1}^{\infty} J_{0}(4 k \pi)^{t-1} \cos 2 \pi k x \tag{1}
\end{equation*}
$$

on $(0,1)$. Here $J_{0}(\cdot)$ is the Bessel function of the first kind of index 0 .

2. The main theorem

The aim of this paper is to obtain explicit forms of the repartition and of the density functions of the sequence $\left(P\left(\theta^{n}\right) \bmod 1\right)_{n \geq 1}$, where θ is a quartic Salem number.

For a non-constant polynomial $P(x)=\sum_{j=0}^{m} a_{j} x^{j}$ with integer coefficients, let $Q_{1}^{-1}, Q_{2}^{-1}, \ldots, Q_{K}^{-1}$ be all branches of the inverse function of $Q(x)=-2 \sum_{j=0}^{m} a_{j} T_{j}(x)$, restricted to $[-1,1]$, where T_{j} is Chebyshev polynomial of the first kind with degree j. Since $Q(x)$ is a polynomial, we can introduce a partition of $[-1,1]$, namely $-1=x_{0}<x_{1}<\cdots<x_{K}=1$ such that $Q^{\prime}\left(x_{1}\right)=Q^{\prime}\left(x_{2}\right)=\cdots=Q^{\prime}\left(x_{K-1}\right)=0$ and $Q^{\prime}(x)$ is positive or negative on each sub-interval $\left(x_{k-1}, x_{k}\right), k=1,2, \ldots, K$. Let us introduce α_{k}, β_{k} : if $Q^{\prime}(x)$ is positive on $\left(x_{k-1}, x_{k}\right)$, then $Q\left(x_{k-1}\right)=\alpha_{k}, Q\left(x_{k}\right)=\beta_{k}$; if $Q^{\prime}(x)$ is negative on (x_{k-1}, x_{k}), then $Q\left(x_{k-1}\right)=\beta_{k}, Q\left(x_{k}\right)=\alpha_{k}$. Now we define $Q_{k}^{-1}(x)$ as the inverse function of $Q(x)$ on [x_{k-1}, x_{k}]. Then [α_{k}, β_{k}] will be the domain of Q_{k}^{-1}, where $\alpha_{k}<\beta_{k}$ and $k \in\{1,2, \ldots, K\}$. Let S_{k} be the extension of Q_{k}^{-1} to \mathbb{R}, defined as follows:

$$
S_{k}(x)=\left\{\begin{array}{c}
Q_{k}^{-1}(x) \text { for } x \in\left[\alpha_{k}, \beta_{k}\right] \\
Q_{k}^{-1}\left(\alpha_{k}\right) \text { for } x \in\left(-\infty, \alpha_{k}\right) \\
Q_{k}^{-1}\left(\beta_{k}\right) \text { for } x \in\left(\beta_{k}, \infty\right)
\end{array}\right.
$$

in the case $Q_{k}^{-1}(x)$ is decreasing on $\left[\alpha_{k}, \beta_{k}\right]$,

$$
S_{k}(x)=\left\{\begin{array}{c}
-Q_{k}^{-1}(x) \text { for } x \in\left[\alpha_{k}, \beta_{k}\right] \\
-Q_{k}^{-1}\left(\alpha_{k}\right) \text { for } x \in\left(-\infty, \alpha_{k}\right) \\
-Q_{k}^{-1}\left(\beta_{k}\right) \text { for } x \in\left(\beta_{k}, \infty\right)
\end{array}\right.
$$

in the case $Q_{k}^{-1}(x)$ is increasing on $\left[\alpha_{k}, \beta_{k}\right]$. Setting $g(x)=\pi^{-1} \sum_{k=1}^{K}\left(\arccos \left(S_{k}(x)\right)\right)$ and $M=\left[\max _{1 \leq k \leq K} \max \left\{\left|\alpha_{k}\right|,\left|\beta_{k}\right|\right\}\right]+1$, then we have the following result.

Theorem 2.1. The repartition and the density functions of the sequence $\left(P\left(\theta^{n}\right) \bmod 1\right)_{n \geq 1}$, where θ is a quartic Salem number are defined by the equations:

$$
f(x)=\sum_{i=-M}^{M}(g(x+i)-g(i))
$$

and

$$
\begin{equation*}
f^{\prime}(x)=\pi^{-1} \sum_{i=-M}^{M} \sum_{k=1}^{K}\left(\arccos \left(S_{k}(x+i)\right)\right)^{\prime} \tag{2}
\end{equation*}
$$

Proof. Let conjugates of θ be $\theta^{-1}, \exp (2 \mathrm{i} \pi \omega)$, $\exp (-2 \mathrm{i} \pi \omega)$. Since for any natural n

$$
\begin{aligned}
& a_{j}\left(\theta^{n j}+\theta^{-n j}+2 \cos 2 \pi n j \omega\right) \equiv 0(\bmod 1) j=0,1, \ldots, m \\
& P\left(\theta^{n}\right)=\sum_{j=0}^{m} a_{j} \theta^{n j} \equiv-\sum_{j=0}^{m} a_{j}\left(\theta^{-n j}+2 \cos 2 \pi n j \omega\right)(\bmod 1) .
\end{aligned}
$$

Since $\sum_{j=0}^{m} a_{j} \theta^{-n j}$ tends to the integer a_{0} as n tends to infinity the distribution of $P\left(\theta^{n}\right)(\bmod 1)$ is essentially that of

$$
-2 \sum_{j=0}^{m} a_{j} \cos 2 \pi n j \omega=-2 \sum_{j=0}^{m} a_{j} T_{j}(\cos 2 \pi n \omega)=Q(\cos 2 \pi n \omega),
$$

where $T_{j}(x)=\sum_{k=0}^{j} b_{k}^{\langle j\rangle} x^{k}$ is Chebyshev polynomial of the first kind. Hence we have

$$
Q(w)=-2 \sum_{j=0}^{m} a_{j} \sum_{k=0}^{j} b_{k}^{(j)} w^{k}=-2\left(c_{m} w^{m}+c_{m-1} w^{m-1}+\cdots+c_{0}\right) .
$$

where we denoted $w=\cos 2 \pi n \omega$ and

$$
\begin{align*}
c_{m} & =a_{m} b_{m}^{\langle m\rangle}, \\
c_{m-1} & =a_{m-1} b_{m-1}^{\langle m-1\rangle}+a_{m} b_{m-1}^{\langle m\rangle}, \\
& \ldots \tag{3}\\
c_{j} & =a_{j} b_{j}^{\langle j\rangle}+a_{j+1} b_{j}^{\langle j+1\rangle}+\cdots+a_{m} b_{j}^{\langle m\rangle}, \\
& \ldots \\
c_{0} & =a_{0} b_{0}^{\langle 0\rangle}+a_{1} b_{0}^{\langle 1\rangle}+a_{2} b_{0}^{\langle 2\rangle}+\ldots+a_{m} b_{0}^{\langle m\rangle} .
\end{align*}
$$

It is obvious that $Q(w) \in[-M, M]$ thus $\{Q(w)\}<x \Leftrightarrow$ there is an $i \in\{-M,-M+1, \ldots, M-1\}$ such that $i \leq Q(w) \leq i+x$. Now we conclude that there is a $k \in\{1,2, \ldots, K\}$ such that: if Q^{-1} is increasing on $\left[\alpha_{k}, \beta_{k}\right]$ then we have $Q_{k}^{-1}\left(\max \left(\alpha_{k}, i\right)\right) \leq$ $w \leq Q_{k}^{-1}\left(\min \left(\beta_{k}, i+x\right)\right)$ and $S_{k}(i) \geq-w \geq S_{k}(i+x)$; if Q^{-1} is decreasing on $\left[\alpha_{k}, \beta_{k}\right]$ then $Q_{k}^{-1}\left(\max \left(\alpha_{k}, i\right)\right) \geq w \geq$ $Q_{k}^{-1}\left(\min \left(\beta_{k}, i+x\right)\right)$ and $S_{k}(i) \geq w \geq S_{k}(i+x)$. It is easy to verify that $(2 \pi)^{-1} \arccos (\cos 2 \pi t)=\|t\|$ and, as a consequence of this, that $(2 \pi)^{-1} \arccos (-\cos 2 \pi t)=(2 \pi)^{-1} \arccos \cos (2 \pi t+\pi)=\|t+1 / 2\|$, for that reason we have

$$
(2 \pi)^{-1} \arccos \left(Q_{k}^{-1}\left(\max \left(\alpha_{k}, i\right)\right)\right) \leq\|n \omega\| \leq(2 \pi)^{-1} \arccos \left(Q_{k}^{-1}\left(\min \left(\beta_{k}, i+x\right)\right)\right)
$$

in the case Q_{k}^{-1} is decreasing, or

$$
(2 \pi)^{-1} \arccos \left(-Q_{k}^{-1}\left(\max \left(\alpha_{k}, i\right)\right)\right) \leq\|n \omega+1 / 2\| \leq(2 \pi)^{-1} \arccos \left(-Q_{k}^{-1}\left(\min \left(\beta_{k}, i+x\right)\right)\right)
$$

in the case Q_{k}^{-1} is increasing.
It is fulfilled that $\|n \omega\|$ and $\|n \omega+1 / 2\|$ are uniformly distributed on $[0,1 / 2]$ because $1, \omega$ are \mathbf{Q}-linearly independent [2], Theorem 5.3.2 so we can use [2], Theorem 4.6.3. Consequently, for all L, R such that $0 \leq L<R \leq 1 / 2$,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{card}\{n<N \mid L \leq\|n \omega\| \leq R\}=2(R-L) \\
& \lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{card}\left\{n<N \left\lvert\, L \leq\left\|n \omega+\frac{1}{2}\right\| \leq R\right.\right\}=2(R-L)
\end{aligned}
$$

Let $K_{1} \leq K$ be natural number such that $Q_{1}^{-1}, Q_{2}^{-1}, \ldots, Q_{K_{1}}^{-1}$ are decreasing and $Q_{K_{1}+1}^{-1}, Q_{K_{1}+2}^{-1}, \ldots, Q_{K}^{-1}$ are increasing. Now we can determine the repartition function

$$
\begin{aligned}
& f(x)=\lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{card}\{n<N \mid\{Q(\cos (2 \pi n \omega))\}<x\}= \\
& \lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{card} \bigcup_{i=-M}^{M}\left(\bigcup_{k=1}^{K_{1}}\left\{n<N \left\lvert\, \frac{\arccos \left(Q_{k}^{-1}\left(\max \left(\alpha_{k}, i\right)\right)\right)}{2 \pi} \leq\|n \omega\| \leq \frac{\arccos \left(Q_{k}^{-1}\left(\min \left(\beta_{k}, i+x\right)\right)\right)}{2 \pi}\right.\right\} \bigcup\right. \\
& \left.\bigcup_{k=K_{1}+1}^{K}\left\{n<N \left\lvert\, \frac{\arccos \left(-Q_{k}^{-1}\left(\max \left(\alpha_{k}, i\right)\right)\right)}{2 \pi} \leq\left\|n \omega+\frac{1}{2}\right\| \leq \frac{\arccos \left(-Q_{k}^{-1}\left(\min \left(\beta_{k}, i+x\right)\right)\right)}{2 \pi}\right.\right\}\right)= \\
& \sum_{i=-M}^{M} \sum_{k=1}^{K}\left(\frac{1}{\pi} \arccos \left(S_{k}(i+x)\right)-\frac{1}{\pi} \arccos \left(S_{k}(i)\right)\right)= \\
& \sum_{i=-M}^{M}(g(x+i)-g(i))
\end{aligned}
$$

because all sets in the double union are disjoint. Now it is obvious that the density function is

$$
\begin{equation*}
f^{\prime}(x)=\sum_{i=-M}^{M} g^{\prime}(x+i) \tag{4}
\end{equation*}
$$

Remark 1. For practical implementation of the algorithm presented in Theorem 2.1, it is more convenient to determine M using (3) with $M=2 \sum_{j=0}^{m}\left|c_{j}\right|$.

Remark 2. Since $\left\{P\left(\theta^{n}\right)\right\}=\left\{P\left(\theta^{n}\right)+l\right\}, l \in \mathbb{Z}$ we can take, without loss of generality, that $a_{0}=0$.
Corollary 2.2. Let the line $x=v, v \in[0,1]$ be a vertical asymptote of the graph of the density function $y=f(x)$. Then $\lim _{x \rightarrow v-0} f^{\prime}(x)=\infty$ if and only if $v=1$ or $v=\left\{\beta_{k}\right\}$ and $\lim _{x \rightarrow v+0} f^{\prime}(x)=\infty$ if and only if $v=0$ or $v=\left\{\alpha_{k}\right\}, k=1,2, \ldots, K$.

Proof. We proved in the Theorem 2.1 that

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{i=-M}^{M} g^{\prime}(x+i)=\sum_{i=-M}^{M} \sum_{k=1}^{K} \pi^{-1}\left(\arccos \left(S_{k}(i+x)\right)\right)^{\prime}= \\
& =-\pi^{-1} \sum_{i=-M}^{M} \sum_{k=1}^{K}\left(1-S_{k}^{2}(i+x)\right)^{-1 / 2} S_{k}^{\prime}(i+x)
\end{aligned}
$$

Now we conclude that $\lim _{x \rightarrow v-0} f^{\prime}(x)=\infty$ if and only if there are i_{0}, k_{0} such that

$$
\lim _{\left[\alpha_{k_{0}}, \beta_{k_{0}}\right] \ni x \rightarrow v-0}\left(1-\left(Q_{k_{0}}^{-1}\right)^{2}\left(i_{0}+x\right)\right)^{-1 / 2} S_{k_{0}}^{\prime}\left(i_{0}+x\right)=\infty
$$

There are two cases: either $Q_{k_{0}}^{-1}\left(i_{0}+v\right)= \pm 1$ or $\lim _{x \rightarrow v-0} S_{k_{0}}^{\prime}\left(i_{0}+x\right)=\infty$. If $Q_{k_{0}}^{-1}\left(i_{0}+v\right)= \pm 1$ then $i_{0}+v=Q_{k_{0}}(\pm 1)$. Since $Q_{k_{0}}(\pm 1)$ is an integer and $v \in[0,1]$, we conclude that either $v=0$ or $v=1$. But $v=0$ is impossible because $v-0$ will be out of the domain of $Q_{k_{0}}^{-1}(x)$. If $\lim _{x \rightarrow v-0} S_{k_{0}}^{\prime}\left(i_{0}+x\right)=\infty$ then, using the last remark, either $i_{0}+v=\alpha_{k_{0}}$ or $i_{0}+v=\beta_{k_{0}}$. Again $i_{0}+v=\alpha_{k_{0}}$ is impossible because $i_{0}+v-0$ will be out of the domain of $S_{k_{0}}^{\prime}(x)$. If $i_{0}+v=\beta_{k_{0}}$ then we conclude that $v=\left\{\beta_{k_{0}}\right\}$ with an exception: if $\beta_{k_{0}}$ is an integer then its fractional part is 0 but, as we have seen, $v=0$ is impossible. Nevertheless, the claim is true because, in that case, the line $x=1$ should be a vertical asymptote of the graph.

It is obvious that $\lim _{x \rightarrow v+0} f^{\prime}(x)=\infty$ if and only if $v=0$ or $v=\left\{\alpha_{k}\right\}$ can be proved completely analogously.
We present the next procedure for sketching the graph of the density function, resulting from the previous corollary:
(i) find a set \bar{A} of local minimum points, a set \bar{B} of local maximum points, and a set \bar{S} of (horizontal inflection) stationary points on $[-1,1]$ of $Q(x)$;
(ii) find a set A of fractional parts of values at local minimum points, a set B of fractional parts of values at local maximum points, and a set S of fractional parts of values at stationary points of $Q(x)$;
(iii) let $x_{0}, x_{1}, \ldots, x_{r}, 0=x_{0}<x_{1}<\cdots<x_{r}=1$ be sorted $r+1$ elements of $A \cup B \cup S$;
(iv) if $x_{i} \in A \cup S, x_{i+1} \in B \cup S$ then $f^{\prime}(x)$ has vertical asymptotes $x=x_{i}, x=x_{i+1}$ on interval (x_{i}, x_{i+1}) so $f^{\prime}(x)$ has the shape of \cup;
(v) If $x_{i} \in A \cup S, x_{i+1} \in A \backslash(B \cup S)$ then $f^{\prime}(x)$ has vertical asymptote $x=x_{i}$ on interval (x_{i}, x_{i+1}) so $f^{\prime}(x)$ has the shape of left half of \cup, we will denote it by L;
(vi) if $x_{i} \in B \backslash(A \cup S), x_{i+1} \in B \cup S$ then $f^{\prime}(x)$ has vertical asymptote $x=x_{i+1}$ on interval (x_{i}, x_{i+1}), so $f^{\prime}(x)$ has the shape of the right half of \cup; we will denote it by \rfloor;
(vii) If $x_{i} \in B \backslash(A \cup S)$, $x_{i+1} \in A \backslash(B \cup S)$, then $f^{\prime}(x)$ has no vertical asymptote on interval (x_{i}, x_{i+1}), so $f^{\prime}(x)$ has the shape of \smile.

Remark 3. In the first item of the previous procedure, we have to solve the equation $-Q^{\prime}(\cos t) \sin t=0 \Leftrightarrow \sin t=0 \vee$ $Q^{\prime}(\cos t)=0$. Solutions to $\sin t=0$ are $t=k \pi, k \in \mathbb{Z}$. If x is a solution to $Q^{\prime}(x)=0$ and $-1 \leq x \leq 1$ then $t=\arccos (x)+2 k \pi$, $k \in \mathbb{Z}$ is a stationary point of $Q(\cos (t))$. Thus, if a solution to $Q^{\prime}(x)=0$ is out of \mathbb{R} or greater than 1 in modulus, we should ignore it.

In the second item, we have to find $\{Q(\cos k \pi)\}=\{Q(\pm 1)\}=0, k \in \mathbb{Z}$ so that $0 \in A \cup B \cup S$. Since the fractional part of a real number is in $[0,1$) we should take that 0 and 1 must be both in or both out of set A, as well as B and S. We conclude that $1 \in A \cup B \cup S$.

3. Linear, quadratic and cubic polynomial

If $P(x)=a_{1} x$ then, using the notation of the Theorem 2.1, we have only one branch of the inverse function of $Q(x)=$ $-2 a_{1} x$ i.e. $Q^{-1}(x)=\frac{-x}{2 a_{1}}$, so that $g(x)=\pi^{-1} \arccos \left(\frac{-x}{2 a_{1}}\right)$. The repartition function is $f(x)=\pi^{-1} \sum_{i=-2 a_{1}}^{2 a_{1}-1}\left(\arccos \left(-\frac{x+i}{2 a_{1}}\right)-\right.$ $\left.\arccos \left(-\frac{i}{2 a_{1}}\right)\right)$. The density function is $f^{\prime}(x)=$

$$
=\frac{1}{2 a_{1} \pi}\left(\frac{1}{\sqrt{1-\frac{\left(x-2 a_{1}\right)^{2}}{4 a_{1}^{2}}}}+\frac{1}{\sqrt{1-\frac{\left(x-2 a_{1}+1\right)^{2}}{4 a_{1}^{2}}}}+\cdots+\frac{1}{\sqrt{1-\frac{\left(x+2 a_{1}-1\right)^{2}}{4 a_{1}^{2}}}}\right)
$$

If we take $a_{1}=1$ we get the Dupain's formula, which is presented above.
Hereafter we suppose that $P(x)=a_{2} x^{2}+a_{1} x$ and then, using the notation of the Theorem 2.1, we have two branches of the inverse function of $Q(x)=-4 a_{2} x^{2}-2 a_{1} x+2 a_{2}$, i.e. $Q_{1}^{-1}(x)=-\frac{a_{1}+\sqrt{a_{1}^{2}+8 a_{2}^{2}-4 a_{2} x}}{4 a_{2}}, Q_{2}^{-1}(x)=-\frac{a_{1}-\sqrt{a_{1}^{2}+8 a_{2}^{2}-4 a_{2} x}}{4 a_{2}}$.

Since $Q^{\prime}\left(-\frac{a_{1}}{4 a_{2}}\right)=0, Q(x)$ has extremum $V=\frac{a_{1}^{2}}{4 a_{2}}+2 a_{2}$ at $x=-\frac{a_{1}}{4 a_{2}}$. Using the previous Corollary, we can conclude that the graph of the density function $y=f^{\prime}(x)$ has an inner vertical asymptote $x=v, v=\{V\} \in(0,1)$ if and only if

$$
\begin{equation*}
-1<-\frac{a_{1}}{4 a_{2}}<1, \quad a_{1} \neq 0, \quad V \notin \mathbb{Z} \tag{5}
\end{equation*}
$$

If $a_{2}>0$, then $Q(x)$ has maximum V so that $\lim _{x \rightarrow v-0} f^{\prime}(x)=\infty$. In that case $\lim _{x \rightarrow 0+0} f^{\prime}(x)=\infty$ so that the graph of $y=f^{\prime}(x)$ has shape $\cup \smile$. Similarly, if conditions (5) are fulfilled and $a_{2}<0$, then the graph of $y=f^{\prime}(x)$ has shape $\smile \cup$. If any of the conditions (5) is not fulfilled, then the graph of $y=f^{\prime}(x)$ has shape \cup.

Finally, we suppose that $P(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x$, so that we have three branches of the inverse function of $Q(x)=$ $-8 a_{3} x^{3}-4 a_{2} x^{2}+\left(6 a_{3}-2 a_{1}\right) x+2 a_{2}$. Its explicit formulas are clumsy, so we will not cite them here. The roots of $Q^{\prime}(x)=0$ are

$$
\bar{x}_{1,2}=\frac{-a_{2} \pm \sqrt{9 a_{3}^{2}+a_{2}^{2}-3 a_{1} a_{3}}}{6 a_{3}}
$$

In Table 1, using the procedure for sketching the graph of $f^{\prime}(x)$, we represent different shapes of graphs.

4. Some polynomials of degree $\boldsymbol{m}>3$

It is clear, by the above-mentioned results of Dupain as well as those of Doche, Mendès France and Ruch, that the repartition and the density functions of the sequence $\left(P\left(\theta^{n}\right) \bmod 1\right)_{n \geq 1}$ are well understood when θ is a Salem number and $P(x)=x^{m}$, since any power of a Salem number (with degree $2 t$) is also a Salem number (of degree $2 t$); see, for instance, [7] and [8].

Table 1
Procedure for sketching the graph of the density function.

a_{3}, a_{2}, a_{1}	\bar{x}_{1}	\bar{x}_{2}	$Q\left(\bar{x}_{1}\right)$	$Q\left(\bar{x}_{2}\right)$	A	B	S	$f^{\prime}(x)$
1, 1, 1	-0.61	0.27	-0.11	2.63	0.89, 0, 1	0.63, 0, 1		$\cup \smile \cup$
3, 5, 6	-0.68	0.12	4.22	10.39	0.22, 0, 1	0.39, 0, 1		\U」
3, 3, 10	-0.17	-0.17	6.11	6.11	0, 1	0, 1	0.11	U
1, $-1,-2$	-0.5	0.83	-5	4.48	0, 1	0.48, 0, 1		$\cup\rfloor$
1, 2, 3	-0.67	0	2.82	4	0.82, 0, 1	0, 1		LU
1, -2, -2	-0.39	1.06	-6.21		0.79	0,1		$\smile \cup$
1, 2, -2	-1.06	0.39		6.21	0, 1	0.21		$\cup \smile$
1, 0, 0	-0.5	0.5	-2	2	0, 1	0, 1		\cup
1, 1, 4	$\notin \mathbb{R}$	$\notin \mathbb{R}$			0, 1	0, 1		\cup

There are integer coefficients a_{j} of $P(x)$ such that $Q(x)=-2^{m} x^{m}$. We can use Eqs. (3) to find such a_{j}. The power x^{n} can be expressed in terms of the Chebyshev polynomials of degrees up to n (for proof see [6], chapter 2.3.1):

$$
\begin{equation*}
x^{m}=2^{1-m} \sum_{k=0}^{[m / 2]},\binom{m}{k} T_{m-2 k}(x), \tag{6}
\end{equation*}
$$

where the dash (Σ^{\prime}) denotes that the k-th term in the sum is to be halved if m is even and $k=m / 2$. Let m be odd, we conclude that if

$$
P(x)=\sum_{k=0}^{(m-1) / 2}\binom{m}{k} x^{m-2 k},
$$

then $Q(x)=-2^{m} x^{m}$, its inverse function can be easily found: $Q^{-1}(x)=-\sqrt[m]{x} / 2$. Using (2), we obtain that

$$
f^{\prime}(x)=\frac{1}{\pi} \sum_{i=-2^{m}}^{2^{m}-1} \frac{\sqrt[m]{x+i}}{2 m(x+i) \sqrt{1-(\sqrt[m]{x+i})^{2} / 4}}
$$

We will show that $f^{\prime}(1 / 2+x)=f^{\prime}(1 / 2-x),|x| \leq 1 / 2$. For that reason, $x=1 / 2$ is a line of symmetry of the graph of $f^{\prime}(x)$. It is convenient to introduce

$$
g^{\prime}(x)=\frac{1}{\pi} \frac{\sqrt[m]{x}}{2 m x \sqrt{1-(\sqrt[m]{x})^{2} / 4}}
$$

then we have

$$
\begin{array}{rlr}
f^{\prime}(1 / 2+x) & =\sum_{i=-2^{m}}^{2^{m}-1} g^{\prime}(1 / 2+x+i) & \left(g^{\prime}(x) \text { is even }\right) \\
& =\sum_{i=-2^{m}}^{2^{m}-1} g^{\prime}(-1 / 2-x-i) \quad(i=j-1) \\
& =\sum_{j=-2^{m}+1}^{2^{m}} g^{\prime}(-1 / 2-x-j+1)(j=-i) \\
& =\sum_{i=-2^{m}}^{2^{m}-1} g^{\prime}(1 / 2-x+i) \\
& =f^{\prime}(1 / 2-x)
\end{array}
$$

Let m be even, we conclude from (6) that if

$$
P(x)=\sum_{k=0}^{m / 2-1}\binom{m}{k} x^{m-2 k}+\frac{1}{2}\binom{m}{m / 2},
$$

then $Q(x)=-2^{m} x^{m}$, its inverse function can be easily found: $Q^{-1}(x)= \pm \sqrt[m]{x} / 2$. Using the algorithm presented in the Theorem 2.1 we obtain that

Fig. 1. $f^{\prime}(x)$ (the black curve) of $\left(P\left(\theta^{n}\right) \bmod 1\right)_{n \geq 1}$, where $P(x)=x^{3}+x^{2}+x$ and the distribution histogram of the sequence. The shape of $f^{\prime}(x)$ is $\bigcup \cup \cup$.

Fig. 2. $f^{\prime}(x)$ (the black curve) of $\left(P\left(\theta^{n}\right) \bmod 1\right)_{n \geq 1}$, where $P(x)=3 x^{3}+5 x^{2}+6 x$ and the distribution histogram of the sequence. The shape of $f^{\prime}(x)$ is $\lfloor\bigcup\rfloor$.

Fig. 3. $f^{\prime}(x)$ (the black curve) of $\left(P\left(\theta^{n}\right) \bmod 1\right)_{n \geq 1}$, where $P(x)=x^{3}-x^{2}-2 x$ and θ is a quartic Salem number and the distribution histogram of $\left(P\left(\theta_{1}^{n}\right) \bmod 1\right)_{n \geq 1}$, where θ_{1} is a Salem number of degree six. We can notice that it is close to the density function of the uniform distribution. The shape of $f^{\prime}(x)$ is $\left.\bigcup\right\rfloor$.

$$
f^{\prime}(x)=\frac{1}{\pi} \sum_{i=1}^{2^{m}} \frac{\sqrt[m]{-x+i}}{m(-x+i) \sqrt{1-(\sqrt[m]{-x+i})^{2} / 4}}
$$

To illustrate the main theorem and the procedure, we give examples of distributions for some polynomials from Table 1. Using the definition of $f(x)$ and the well-known fact that the first derivative of the function $f(x)$ on a small interval [a,b] could be estimated with the finite difference: $f(b)-f(a)$ divided by $b-a$, we approximate $f^{\prime}(x)$. The interval $[0,1]$ is divided into p pieces. We compute the fractional part of $P\left(\theta^{n}\right)$ for $1 \leq n \leq N$, and count the number of n so that the fractional part of $P\left(\theta^{n}\right)$ falls into each of subintervals. The vertical axis indicates the number of such n divided by N / p, so that this normalization results in a relative histogram that coincides with $f^{\prime}(x)$, the function determined using the main theorem.

The histograms in Figs. 1, 2 are generated using the Salem number θ, which is the root of $x^{4}-x^{3}-x^{2}-x+1$. The histogram in Fig. 3 is generated by θ_{1}, the root of $x^{6}-x^{5}-x^{4}+x^{3}-x^{2}-x+1$, a Salem number of degree 6 . At $x=0.481$, where $f^{\prime}(x)$ has the vertical asymptote, the histogram has only a low peak (Fig. 3). If the histogram is generated by a Salem number of degree 8, we can notice that it is almost flat. Since $J_{0}(x)=O(1 / \sqrt{x})$, for large degrees t, the sum of the series in (1) is small, so the sequence $\left(\theta^{n} \bmod 1\right)_{n \geq 1}$ is close to being equidistributed, a fact that Akiyama and Tanigawa [1] make very explicit in their article. We can conclude that the same property is valid for the sequence $\left(P\left(\theta^{n}\right) \bmod 1\right)_{n \geq 1}$. Experimenting with different Salem numbers θ of degree six, for fixed P, we can conclude that the histogram does not depend on their size. We can explain why the formula (1) depends only on the degree $2 t$ of θ : (1) numbers $1, \omega_{1}, \ldots, \omega_{t-1}$
are \mathbb{Z}-lineary independent; (2) the $(t-1)$ dimensional sequence $\left(\omega_{1} n, \ldots, \omega_{t-1} n\right)$ is equidistributed in $(\mathbb{R} / \mathbb{Z})^{t-1}$; (3) the function $\cos 2 \pi x$ is periodic so that Doche, Mendès France and Ruch [4] can transform the sum into the integral in the proof of their Lemma 2.1. We conclude that the repartition function of the sequence $\left(P\left(\theta^{n}\right) \bmod 1\right)_{n \geq 1}$ does not depend on θ because we can obtain that (3) becomes $\sum_{j=0}^{m} a_{j} \cos (2 j \pi x)$, which is also periodic.

Acknowledgements

I am grateful to Michel Mendès France, Chris Smyth, Toufik Zaïmi and the referee for their comments and suggestions. Toufik Zaïmi, especially, indicated and corrected a gap in an earlier version.

References

[1] S. Akiyama, Y. Tanigawa, Salem numbers and uniform distribution modulo 1, Publ. Math. (Debr.) 64 (3-4) (2004) 329-341.
[2] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.-P. Schreiber, Pisot and Salem Numbers, Birkhäuser, Basel, Switzerland, 1992.
[3] Y. Bugeaud, Distribution Modulo One and Diophantine Approximation, Cambridge Tracts in Mathematics, vol. 193, Cambridge University Press, Cambridge, UK, 2012.
[4] C. Doche, M. Mendès France, J.-J. Ruch, Equidistribution modulo 1 and Salem numbers, Funct. Approx. Comment. Math. 39 (2) (2008) $261-271$.
[5] Y. Dupain, Répartition et discrépance, PhD thesis, Université Bordeaux-1, 1978.
[6] J.C. Mason, D.C. Handscomb, Chebyshev Polynomials, Chapman and Hall/CRC, Boca Raton, London, New York, Washington D.C., 2003.
[7] R. Salem, Power series with integral coefficients, Duke Math. J. 12 (1945) 153-172.
[8] C. Smyth, Seventy years of Salem numbers, Bull. Lond. Math. Soc. 47 (3) (2015) 379-395.

[^0]: E-mail address: dstankov@rgf.bg.ac.rs.
 http://dx.doi.org/10.1016/j.crma.2016.03.012
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

