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Branching can be observed at the austenite–martensite interface of martensitic phase 
transformations. For a model problem, Kohn and Müller studied a branching pattern with 
optimal scaling of the energy with respect to its parameters. Here, we present finite 
element simulations that suggest a topologically different class of branching patterns and 
derive a novel, low-dimensional family of patterns. After a geometric optimization within 
this family, the resulting pattern bears a striking resemblance to our simulation. The novel 
microstructure admits the same scaling exponents, but results in a significantly lower 
upper energy bound.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Un motif de ramification est observé à l’interface austénite–martensite au cours de la 
transformation de phase martensitique. Kohn et Müller étudient un motif de ramification 
qui reflète les exposants optimaux de l’énergie en fonction de ses paramètres. Nous 
présentons ici des simulations par la méthode des éléments finis qui suggèrent une 
classe de ramifications ayant une topologie différente, et déduisons une nouvelle famille 
de ramifications, de faibles dimensions. Après optimisation géométrique au sein de cette 
famille, le motif résultant présente une ressemblance remarquable avec les résultats de 
notre simulation. Le nouveau motif possède les mêmes exposants d’échelle optimaux, mais 
fournit une constante significativement inférieure dans le contrôle de l’énergie.
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Fig. 1. Different zooms are displayed for a discrete minimizer of the energy E ε̃ in (2) with 106 elements on � = [0, 1]2 with ε̃ = 2
√

5 · 10−3 and σ = 10, 
where blue encodes u y ≈ −1 and red u y ≈ +1.

1. Introduction

In this article, we study a non-convex scalar variational problem [7,12,1,8] considered to be a model for austenite–
martensite interfaces in solid–solid phase transitions. Such interfaces often exhibit characteristic fine-scale phase mixtures, 
where the austenite phase, of higher crystallographic symmetry, is separated from thin layers of alternating martensitic 
phase variants. In the seminal work by Kohn and Müller [8,9], the energy functional

Fε[u] =
∫

�

ε |u yy| + u2
x dx dy (1)

was studied for suitable u : � → R with � = (0, L) × (0, 1) ⊂ R
2 under the constraint that u y = ±1 almost everywhere 

and u = 0 on ∂�. They show that there are constants c, C > 0 such that c ε2/3L1/3 ≤ min Fε [u] ≤ C ε2/3L1/3. In order to 
recover the upper bound, they use an explicitly constructed branching pattern, which – after some optimization – yields a 
constant C = 6.86. In [4], Conti proved the asymptotic self-similarity of the energy minimizer near the Dirichlet boundary 
at x = 0, in the sense that the sequence u j(x, y) = θ−2 j/3u(θ j x, θ2 j/3 y) admits a W 1,2-strongly converging subsequence. 
A corresponding diffuse interface Landau-type energy functional approximating Fε is given by

E ε̃[u] =
∫

�

1
2 ε̃2 u2

yy + σ (u2
y − 1)2 + u2

x dx dy , (2)

with given σ > 0, which corresponds to an effective interfacial energy of ε = 2
√

2σ
3 ε̃ in (1), cf. eq. (1.3) in [9]. Here, we 

report on a high-precision subdivision finite element simulation of this diffuse model, which allowed us to observe a par-
ticular branching pattern, which differs substantially from the construction studied in [8] as well as from other proposed 
patterns [10]. Based on this insight from the numerical experiment, we construct a novel, low-dimensional family of branch-
ing microstructures for the sharp-interface model (1). Optimizing over all geometric degrees of freedom in our model, the 
resulting pattern shows a striking geometric resemblance of the subdivision finite element simulation results. Furthermore, 
our branching pattern yields a significantly lower upper bound constant C for the energy.

2. Optimal branching pattern observed via FEM simulation for diffuse interfaces

The branching pattern investigated in this paper is derived from the results of a finite element simulation of the diffuse 
interface model. To minimize the energy (2) via a conforming finite element method, H2-regular ansatz functions have 
to be taken into account. To this end, we fix L = 1 and use a conforming subdivision finite element approach [2,3,5]
with C2 basis functions that are quartic polynomials defined via Loop subdivision on a regular triangular mesh on the 
domain � = (0, L) × (0, 1). We consider zero Dirichlet boundary conditions. To compute a discrete minimizer, we consider 
a discrete gradient flow approach combined with a convex–concave splitting proposed by D. Eyre [6] for the Cahn–Hilliard 
equation, which turns out to be unconditionally stable. By this method, the branching pattern can robustly be computed 
independently of the chosen initial data. Fig. 1 depicts the numerically computed minimizer of the energy (2). Obviously, 
branching starts at x = x0 with the generation of one horizontal needle (blue). We denote the vertical stripe between x = x0
and x = x1 as the first branching layer. The second branching layer is located between x = x1 and x = x2, where two new 
needles (blue) are generated, one on either side of the needle from the previous layer. Then in the third branching layer 
(starting at x = x2) four new needles (blue) are generated, i.e. one on either side of the two blue needles from the previous 
layer and, additionally, one (red) needle in the interior of the needle that was generated in the last but one layer. Hence, the 
pattern is topologically different from the one investigated by Kohn and Müller [8], where interior needles are not present. 
Furthermore, the pattern in our simulations differs geometrically from that proposed by Li [10], where interior needles are 
generated in every layer, whereas in our pattern they arise every other layer. Let us mention that a topologically equivalent, 
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Fig. 2. Constructing a periodic cell P3 with K = 3 levels. Starting from the initial word B0 = ω0 = f , the automaton is applied three times to construct 
B1, B2, B3 (using the (NEW) scheme). Afterwards, a y-periodic cell P3 is constructed by reflecting half of the pattern B3 to either side along two straight 
additional interfaces (right). Color code: facet (yellow), spike (red) and trunk (green); black lines denote interfaces separating regions with u y = ±1. All 
patterns Bk and P3 have been rotated by 90◦ for better visualization. Note: The color coding does not represent different phases of martensite (as in 
Fig. 3).

Fig. 3. Periodic cell P4 for (KM), (L) and (NEW) from left to right, with xk = θkl for k ≥ 0 and l < L. Here the color encodes the sign of u y . The computational 
domain CK = [xK , x0] × [ 1

4 , 12 ] is surrounded by the dotted line in the (NEW) scheme. By construction, the pattern is symmetric along y = 1
2 , ensuring 

periodic boundary conditions, i.e. u(x, 0) = u(x, 1). Degrees of freedom in y-direction are shown on the right (white dots), i.e. yk,n for n = 1, . . . , nk for 
each level k.

however geometrically somewhat distorted pattern has been found in less accurate simulations by Muite [11]. Swart and 
Holmes [13] also observed a very similar branching pattern as steady state in their simulations of the dynamic problem 
with inertia and damping, but without an explicit surface energy.

3. Optimal branching pattern for a reduced sharp-interface model

Now, we will use the findings for the diffuse interface model from the previous section to derive a geometrically simple, 
reduced model for the sharp-interface problem (1), optimize over its degrees of freedom, and compare it in terms of the 
stored energy with the correspondingly optimized version of the pattern proposed by Kohn, Müller and by Li.

Topology. For the reduced model, we restrict the ansatz space for u via an assumption on the geometry of the interfaces 
where the gradient of u jumps. In fact, we suppose this interface set to consist of piecewise polygonal lines separating 
regions with u y = ±1. The branching pattern is now constructed by defining needles of different sizes, which are bounded 
by these polygonal lines. We assume that one needle consists of a trunk (t) and a spike (s) on top of it, the material outside 
a needle is referred to as a facet (f). The generation of a particular branching pattern is described best by the action of 
an automaton A. We consider the alphabet { f , s, t, |}, where | denotes an interface. The initial word is given by ω0 = f . 
A branching pattern after K iterations is defined by BK = ω0; A(ω0); . . . ; AK (ω0), where ; represents the generation of a 
new level. The action of A on a word is realized letter by letter where A(|) = | for all patterns. Different branching patterns 
are characterized by the action of A on the three letters { f , s, t}. The new branching pattern (NEW) described in Section 2
is characterized by A(s) = t and A(t) = A( f ) = f | s | f (cf. Fig. 2). The pattern investigated by Kohn and Müller [8] (KM) is 
generated by the rules A(s) = t , A(t) = t and A( f ) = f | s | f , and the pattern proposed by Li [10] (L) is given by the rules 
A(s) =A( f ) = f | s | f . There are no trunks t in the Li model. A periodic cell PK with K levels is now defined by computing 
BK (as described above) and then reflecting half of the pattern to either side along two straight additional interfaces (as 
shown in Fig. 2, right). The constructed pattern consists of connected components (bounded by polygonal lines), which will 
later represent different phases of martensite, i.e. regions with u y = ±1 (cf. Fig. 2 vs. 3).

Geometry. Now we describe the geometric arrangement of � = [0, L] × [0, 1] (cf. Fig. 3). At first we assume that the 
geometry of the period cell PK is fitted in y-direction to the interval [0, 1]. There is a region without any branching needles 
between x = x0 = l and x = L, corresponding to B0 in Fig. 2. Here, l ∈ (0, L) is a degree of freedom. The kth branching level 
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(whose topology is described by the kth iteration of the automaton) is defined as the vertical stripe between x = xk = θkl
and x = xk−1 = θk−1l, for k = 1, . . . , K , where the scaling parameter θ ∈ (0, 1) is another degree of freedom. Note that all 
needles generated by the automaton are bounded by piecewise linear facets whose vertices yk,n are located by definition 
along vertical lines x = xk for each k (cf. Fig. 3, right). Hence, the geometric degrees of freedom in x-direction are given by 
θ and l, and in y-direction by the y-positions of the vertices yk,n . Finally, we introduce a boundary layer (neither shown in 
Fig. 2 nor in Fig. 3) between x = 0 and x = xK in order to interpolate from the zero boundary conditions at x = 0 to the finest 
resolved branching level BK . In this boundary layer, we do no explicitly resolve the branching pattern anymore, but instead 
use an energy estimate as given in (6) below. By construction, the pattern is symmetric along y = 1

2 , ensuring periodic 
boundary conditions, i.e. u(x, 0) = u(x, 1). We choose constant zero boundary conditions u(x, 0) = u(x, 1) = 0 which directly 
implies u(x, 12 ) = 0, i.e. ux(x, 12 ) = 0. We assume that the tip of an (initial) needle and the tip of all needles being generated 
within this initial needle lie on a horizontal line. Note that this only applies to (NEW) and (L) as (KM) never produces new 
needles within one existing needle. Later, we will allow N repetitions of the periodic cell PK in the y-direction, where 
N ∈ N is another degree of freedom.

Elastic energy. The computational domain CK ⊂ PK is limited to CK = [θ K l, l] × [ 1
4 , 12 ], as indicated by the dotted lines 

in Fig. 3. The geometry of CK is described by θ and the y coordinates of the interior vertices of the polygonal interfaces. 
We denote the vertices on the line with xk = θkl from top to bottom by yk,n for n = 1, . . .nk (cf. Fig. 3, right) and the 
open sets of constant slope u y between the lines xk−1 = θk−1l and xk = θkl by Rk,i for i = 1, . . . ik . As u is a piecewise 
linear function by construction, ux is constant on the regions Rk,i for all i, k. Since ux(x, 12 ) = 0, we have ux|Rk,0 = 0. For 
[yk−1,n(k,i), yk,n(k,i)] being the upper edge of Rk,i , the piecewise constant quantity ux on the stripe CK ∩ {xk ≤ x ≤ xk−1} is 
described iteratively by

ux|Rk,i+1 = ux|Rk,i + 2 sign
(

u y
∣∣
Rk,i

) yk−1,n(k,i) − yk,n(k,i)

θk−1l − θkl
, i ≥ 0 . (3)

The elastic energy 
∫
CK

u2
x dx dy is given by Felast[CK ] = ∑K

k=1
∑

i>0(ux|Rk,i )
2 · |Rk,i |. Due to the symmetry of PK , we 

have Felast[PK ] = 4 Felast[CK ]. Note that there is no contribution to the elastic energy in the stripe {(x, y) : l < x < L }. If we 
now rescale PK in y-direction by N−1 (to allow N repetitions of PK ), we have ux ∼ N−1 and |Rk,i | ∼ N−1. The total elastic 
energy F K

elast is now given by summing over all N repetitions of PK , i.e. if we collect all yk,i in a vector Y, we have

F K
elast[θ, N, l,Y] =

∫
x>xK

u2
x dx dy = 4N−2

K∑
k=1

∑
i>0

(
ux|Rk,i

)2 · |Rk,i | ∼ celast(θ,Y) l−1N−2 . (4)

Surface energy. Let Ik denote the number of interfaces in Sk = {(x, y) : xk < x < xk−1} ⊂ PK . Then we obtain ∫
Sk

ε|u yy | dx dy = 2ε (xk−1 − xk) Ik = 2ε (1 − θ)θk−1l Ik for the interface energy which does not depend on the inner ver-

tices yk,i . Obviously Ik = 2 · (1 + 2 
∑k

i=1 si), where si denotes the number of spikes in Si between two parallel interfaces 
shown as vertical black lines in Fig. 2 (right). We deduce si = 2i−1 for (KM) and si = 3i−1 for (L), whereas for (NEW) 
the recursive relation s1 = 1, s2 = 2 and si = 2si−1 + si−2 for i > 2 implies si = (α − β)−1(αi − β i), where α = 1 + √

2 and 
β = 1 −√

2. Plugging this into the formula for Ik yields Ik = αk+1 +βk+1 for (NEW), Ik = 2(2k+1 −1) for (KM) and Ik = 2 ·3k

for (L). If we take into account the two interfaces in {(x, y) ∈ PK : l < x < L} and consider N repetitions of a rescaled cell 
PK , we get:

F K ,ε
surf [θ, N, l] =

∫
x>xK

ε|u yy|dx dy = 2εN(1 − θ)l
K∑

k=1

θk−1 Ik + 4εN(L − l) ∼ csurf(θ) ε l N . (5)

Boundary conditions. So far we have neglected the energy in the domain �K
∂ = {(x, y) : 0 ≤ x < xK }. In particular, we 

have not specified how to fulfill the boundary conditions u = 0 at x = 0 in the reduced model. As there is no closed-form 
formula for the elastic energy on a stripe Sk , we can evaluate (4) only for finite K . Similar to the proof of Lemma 2.3 in 
[4], we construct ũ : �K

∂ → R explicitly, with |ũ y | = 1, ũ(0, y) = 0 and ũ(xK , y) = u(xk, y), and estimate the elastic energy 
in �K

∂ by 
∫
�K

∂
ũ2

x dx dy. Furthermore, we will ensure that 
∫
�K

∂
ε|ũ yy| dx dy = ∫

�K
∂
ε|u yy| dx dy = 2ε N(1 − θ)l 

∑
k>K θk−1 Ik , cf. 

(5). The sum on the right-hand side converges if αθ < 1 for (NEW), 2θ < 1 for (KM) and 3θ < 1 for (L) and the limit can be 
computed explicitly. Hence we get a remaining energy

∫

�K
∂

ε|u yy| + u2
x dx dy ≤ crem(θ)

θ K lN2
+

‖u(xK , .)‖2
L2(0,1)

θ K l
+ 2ε N(1 − θ)l

∑
k>K

θk−1 Ik =: F K ,ε
∂ [θ, N, l, (yK ,i)i]. (6)

Note that ‖u(xK , .)‖2 depends on (yK ,i)i and scales like N−2. Furthermore the constant crem(θ) is the limit of a geometric 
series that converges if α2θ > 1 for (NEW), 4θ > 1 for (KM) and 9θ > 1 for (L).
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Fig. 4. Optimal values for NEW (K = 17), L (K = 14) and KM (K = 12) for fixed N = 2.

Fig. 5. From left to right: optimal patterns of the reduced model (with ε = 0.013 and fixed N = 2) for (KM) with K = 12, (L) with K = 14 and (NEW) with 
K = 17, restricted to the domain [θ K l, l] × [3/8, 5/8]. Right: optimal energy for (NEW) in red, (L) in blue and (KM) in green, with enlargements of crucial 
details. Dotted lines are extrapolations without optimization, nevertheless, energies are monotonically decreasing. Numerical optimization breaks down for 
(KM) if K > 12 due to degeneration of geometry on high levels.

Optimization. Using (4), (5) and (6) we obtain the objective functional for ε > 0 and K ∈N

F K ,ε[θ, N, l,Y] = F K
elast[θ, N, l,Y] + F K ,ε

surf [θ, N, l] + F K ,ε
∂ [θ, N, l, (yK ,i)i] . (7)

Optimizing F K ,ε for N yields N ∼ ε−1/3 l−2/3, i.e. we get the expected scaling F K ,ε ∼ ε2/3 l1/3.
We now optimize F K ,ε in (7) with respect to θ , l, Y for fixed ε > 0, L = 0.5 and K ∈ N for the three different reduced 

models (L), (KM), and (NEW). One may also consider N ∈ N as an additional degree of freedom, which is realized by 
assuming N ∈ R in the simulations. In order to compare the results to the finite element simulation of the diffuse interface 
model shown in Fig. 1, where ε̃ = 2

√
5 · 10−3 and σ = 10 we set ε = 2

√
2σ

3 ε̃ ≈ 0.013 in the reduced model; cf. eq. (1.3) 
in [9].

The simulation is initialized on level K = 4 with the patterns shown in Fig. 3. After optimizing all degrees of freedom 
on this level, K is increased by one by extrapolating the solution of the last level and the whole pattern is optimized again. 
This procedure is repeated iteratively.

4. Discussion and comparison of the branching pattern

The optimal patterns of the reduced models (for fixed N = 2) are compared to each other in Fig. 5. First, the reduced 
(KM) pattern degenerates already at level K = 13, i.e. the monotonicity of the sequence (yk,i)i for k ≈ K is violated. In 
particular, it is energetically not competitive (cf. Figs. 4 and 5, right). Qualitatively, the optimal pattern of (NEW) in Fig. 5c 
is very similar to the optimal pattern of the diffuse interface model in Fig. 1. Striking is the fact that all needles of (NEW) 
are actually diamond-shaped, i.e. bounded by a polygon consisting of four straight lines. Up to some numerical perturbations 
(probably due to boundary effects), this can also be observed in the pattern in Fig. 1. However, these straight lines are not 
mandatory in the reduced model due to the freedom to move yk,i . For instance, this is not the case for the optimal pattern 
of (L) and (KM), cf. Fig. 5a and 5b. The similarity between the optimal (NEW) pattern and the optimal pattern of the diffuse 
interface model also holds quantitatively. First, for (NEW) the optimal value θ = 0.273 reflects very well the corresponding 
measured ratio θ ≈ 0.26 in Fig. 1. Second, the ratio “width-to-height” of the largest needle is approximately 2.6 in Fig. 1
and 2.7 for the optimal pattern of (NEW), Fig. 5c. Furthermore, this ratio decreases in both patterns almost equally when 
going to the second largest needle.

Among the reduced models, the (NEW) pattern performs best energetically, with a relative difference of >1% w.r.t. the 
optimal energy of (L), see Fig. 4. Although the difference is not particularly large, it is stable with respect to a variation of the 
model parameters ε , L and N (not shown here). In particular, this remains true when optimizing over all degrees of freedom 
(cf. Fig. 6). Fig. 6 further reveals that the difference 
F K ,ε of the optimal energies is of the order of 10−3, whereas the error 
(due to the estimate (6) in the boundary layer �∂ ) is of the order of 10−4. Furthermore, the estimate (6) is not sharp and 
hence F K ,ε is dominant for small K , which leads to a substantial over-prediction of the energy of (NEW) for K < 13 (cf. 
∂
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Fig. 6. Optimal values for NEW (K = 17) and L (K = 14) with free N ∈R. Note that 
F K ,ε ∼ 10−3 whereas F K ,ε
∂ ∼ 10−4.

Fig. 5, right). To compare the results to the upper constant C = 6.86, given in [8], we compute C = min(F K ,ε )L−1/3 ε−2/3

and get C = 4.81 (N = 2 fixed) or even C = 4.72 (free N ∈ R) for (NEW) and C = 4.87 or C = 4.78 for (L), respectively.
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