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Given a foliation on a manifold with suitable curvature form, the Euler class of its tangent 
bundle is explicitly computed whenever it admits an umbilic leaf. If the leaf is compact, 
then topological obstructions arise by considering foliated manifolds with certain trivial 
cohomology group. The results fully generalize to distributions tangent to at least one 
compact umbilic submanifold.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Étant donné une variété feuilletée munie de formes de courbure convenables, nous 
calculons explicitement sa classe d’Euler dans le cas totalement ombilical. Si la feuille 
est compacte, nous obtenons des obstructions topologiques dans le cas où certains 
groupes d’homologie de la variété feuilletée sont triviaux. Les résultats se généralisent aux 
distributions tangentes à une sous-variété ombilicale.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The main idea of this manuscript is to compute the Euler class of a foliation F of even dimension, assuming that 
it admits a compact and umbilic leaf. Besides the umbilicity of the leaf, the geometrical assumptions considered are the 
sectional curvatures of the ambient manifold restricted to the leaves of F , and they are the key to write explicitly this class. 
Translating geometrical hypothesis into topological ones implies obstructions to the existence of these foliations by looking 
at the cohomology of the ambient manifold as well as by asking for positiveness of sectional curvatures of M along F .

Theorem 1.1. Let D2k be a distribution on a Riemannian manifold M2k+p with pure curvature form. Let L be a compact umbilic 
submanifold of M, with dimension 2k, and suppose the sectional curvatures of M are nonnegative along L. If D is tangent to L, then 
ε(D) �= 0.
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Some consequences of Theorem 1.1 are related to conditions on the class where ε(D) lives. If the ambient manifold is a 
homology sphere, then it can not be foliated by a foliation satisfying the above hypothesis.

Theorem 1.2. Let F4 be a foliation on a Riemannian manifold M4+p . Let L be a compact umbilic leaf of M, with dimension 4, and 
suppose that the sectional curvatures of M are positive along L. If D is tangent to L, then ε(D) �= 0.

There is a theorem of Milnor (which was not published, but can be found in [8]) which asserts that the fourth sectional 
curvature of M is positive when its sectional curvatures are positive, and in this case the only hypothesis on M is the 
positiveness of its sectional curvatures along L. On the other hand, Alain Connes introduced the Euler characteristic χ(F , ν)

for a foliation endowed with a transverse measure, see [9]. The particular case where F is determined by a closed and 
global form ν of its normal distribution, which is called S L-foliation ([18]), χ(F , ν) is shown to be nonnegative, provided 
the scalar curvatures of the leaves of F are nonnegative, by means of Milnor’s result. The next theorem can be viewed as 
direct consequence of Connes’ “Gauss–Bonnet type” theorem for foliations of dimension 4. It reads:

Theorem 1.3. Let F be a S L-foliation of dimension 4 on a closed Riemannian manifold M4+p . If the scalar curvatures of the leaves are 
nonnegative, then χ(F , ν) = ∫

M ε(F) ∧ ν ≥ 0.

Foliations are integrable subbundles of the tangent bundle, and although in the literature (see [7] and references therein) 
characteristic classes are constructed on the normal bundle, there are interesting consequences when they are computed on 
the tangent distributions themselves. In this context, geometrical and topological hypotheses on the foliations and on the 
ambient manifold are assumed in order to explicitly determine the properties of the classes.

For example, if the foliation is totally geodesic and of odd dimension n, a theorem of [12] asserts that the (n + p)-th 
Pontryagin class of F vanishes. If the leaves are surfaces, and the normal distribution is a minimal foliation, then from [3], 
the Euler class of F is different from zero when Ric(M) > 0.

Umbilic foliations were studied from the perspective of conformal geometry in [14]. Their approach includes the prop-
erties of local and global invariants, the question whether a Riemannian manifold admits an umbilic or a foliation with 
weaker conditions, such as Dupin foliations, as well as asking how far from umbilic a foliation is by defining a conformal 
invariant quantity. In dimension 3, they were classified in the light of transversely holomorphic fields in [5].

Euclidean spheres do not admit totally geodesic nor umbilic foliations of codimension one. However, for codimensions 
greater than one, they are far from being geometrically classified. The geometrical abundance is made explicit already in 
the codimension-2 case of S3,

Theorem 1.4. (See [10].) A submanifold of ̃G2(R) ∼= S2 × S2 corresponds to a fibration of S3 by oriented great circles if and only if it 
is the graph of a certain distance decreasing map f : S2 → S2 .

Umbilic foliations of S3 and other odd spheres S2k+1 are obtained by taking a smooth positive function f constant on the 
leaves of a totally geodesic foliation and making a conformal change of the induced metric, 〈·, ·〉 	→ f 〈·, ·〉, or by considering 
small deformations of all planes which give great circle fibrations, in order to obtain affine nonlinear planes intersecting the 
sphere (see [1,5] and [6] for details).

2. Preliminaries

Let F be an oriented and transversely oriented foliation on a Riemannian manifold M , dim(M) = 2k + p and dim(F) =
2k. Let U be a neighborhood of x ∈ M , {e A} an orthonormal frame defined on U , such that its dual frame, curvature and 
connection forms are related by the structural equations of M

ωA(eB) = δAB , δAB = 0 if A �= B, δA A = 0, ∇e A =
∑

B

ωAB eB , ωAB + ωB A = 0, (1)

dωA =
∑

B

ωAB ∧ ωB , dωAB =
∑

C

ωAC ∧ ωC B − �AB , (2)

�AB = 1

2

∑
C,D

R ABC DωC ∧ ωD , R ABC D + R AB DC = 0, (3)

where 1 ≤ . . . A, B, C, D, . . . ≤ 2k + p. The orthonormal frame is assumed to be an adapted frame, which means that the 
range of indexes vary according to the following notation: 1 ≤ . . . i, j, . . . ≤ 2k < . . .α, β, . . . ≤ 2k + p. A given leaf L of F
is an immersed submanifold of M , and θA and θAB denote the pullback of ωA and ωAB via the immersion, respectively. 
For every section X ∈ �L, θα(X) = 0, then by the previous structure equations, 0 = dθα = ∑

i θαi ∧ θi , dθi = ∑
j θi j ∧ θ j , 

θi j + θ ji = 0. By Cartan’s Lemma, θiα = ∑
j hα

i jθ j , where hα
i j = hα

ji are the entries of the second fundamental form matrix of L
in the normal direction eα . Thus, the curvature forms of M and of a leaf L of F are related by
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�L
i j =

∑
α

θiα ∧ θ jα + �i j. (4)

If L is an umbilic submanifold, θαi = λαθi , with λα : M → R a continuous function. Unless otherwise stated, totally 
geodesic submanifolds will also be called umbilic, since all λα are identically zero in this case.

Let H∗(M, R) be the cohomology ring of M . Taking the aforementioned adapted frame and according to [13], page 318, 
ε(D) ∈ H2k(M, R) can be written as

ε(D) = (−1)k

(4π)kk!
∑

σ∈S2k

sgn(σ )�L
σ (1)σ (2) ∧ · · · ∧ �L

σ (2k−1)σ (2k), (5)

where D is the distribution corresponding to F , and Sn stands for the permutation group of n elements. The first step 
towards an explicit computation of [5] is to find a manifold where �AB can be simply written. The simplest examples are 
space forms, where �AB = c ωA ∧ ωB . Following [2] and [15], there is a much larger class for such manifolds,

Definition 2.1. A Riemannian manifold M is said to have pure curvature form if there exists an orthonormal frame {e A} such 
that �AB = c AB ωA ∧ ωB , on every point of M .

Example 1. Let Nn be an immersed submanifold of Mn+p(c) and suppose it has flat normal bundle. For every x ∈ N , there 
exists a basis of Tx N which diagonalizes (hα

i j) for simultaneous normal directions eα and eβ . By [4], N has pure curvature 
form. In particular, every immersed hypersurface of a space form Mn+1(c) has pure curvature form.

Example 2. By [2], conformally flat manifolds are examples of Riemannian manifolds with pure curvature form. In partic-
ular, every manifold with dimension three is an example, and they are characterized by the fact that their Weyl tensor is 
identically zero.

Remark 1. If M and N are Riemannian manifolds with pure curvature form, then the Riemannian product M × N also 
satisfies the pure form condition.

3. S L-foliations and higher order sectional curvatures

Given any Riemannian manifold, let X , Y smooth fields on M , and define X� and X⊥ as natural tangent and normal 
projections of X , respectively. Also, define A(X, Y ) = (∇Y ⊥ X⊥)� . The application A is a mimetic second fundamental form 
of the normal bundle νF . Nevertheless, according to [11], F is a Riemannian foliation if and only if A is antisymmetric, 
and it is possible to verify that νF is integrable if and only if A is symmetric. Consider H⊥ = tr A = ∑

i,α Ai
ααei ; it is also 

similar to the mean curvature vector field.

Theorem 3.1. (See [18].) Let F be a codimension p foliation on a Riemannian manifold M. Then the following are equivalent:

(a) F is a S L-foliation, that is, the Haefliger cocycles representing F preserve the volume form dx1 ∧ · · · ∧ dxp in Rp;
(b) F admits a global and closed p-form ν;
(c) H⊥ ≡ 0.

In addition to Riemannian foliations, it is straightforward to see that flows of nonsingular solenoidal vector fields (diver-
gence free) are also examples of S L-foliations.

Following [17], for each even integer 2 ≤ j ≤ 2k, define a smooth function γ j , called the j-th sectional curvature of M , 
by

γ j = � j(e1, . . . , e j) =
∑
σ∈S j

sgn(σ )�σ(1)σ (2) ∧ · · · ∧ �σ( j−1)σ ( j)(e1, . . . , e j), (6)

and γ0 = 1 is the constant function. It measures the Lipschitz–Killing curvature of a small j-dimensional submanifold of M , 
under the exponential image of a j-plane. The second sectional curvature γ2 is precisely the usual Riemannian sectional 
curvature. For more details on higher sectional curvatures, see [17] and references therein. In the case where M has pure 
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curvature form, γ j is simply written as

γ j =
∑

i1<···<i j

ci1 i2 · · · ci j−1 i j . (7)

4. Proofs

Lemma 4.1. Under the assumptions of Theorem 1.1, the Euler class can be written as

ε(D) = (−1)k

(4π)kk!
k∑

l=0

(
k

l

)
(2l)!(2k − 2l)!||H||2lγ2k−2lθ1 ∧ · · · ∧ θ2k. (8)

Proof. By equations (4) and (5),

ε(D) = (−1)k

(4π)kk!
∑

σ∈S2k

sgn(σ )

(∑
α

θσ(1)α ∧ θασ(2) + �σ(1)σ (2)

)
∧ · · ·

· · · ∧
(∑

α

θσ(2k−1)α ∧ θασ(2k) + �σ(2k−1)σ (2k)

)
.

The mean curvature field of L is H = ∑
α λαeα , where λα is the principal curvature in the normal direction eα . Thus,

ε(D) = (−1)k

(4π)kk!
k∑

l=0

(
k

l

)
||H||2l

∑
σ∈S2k

sgn(σ )θσ (1) ∧ · · · ∧ θσ (2l) ∧ �σ(2l+1)σ (2l+2) ∧ · · · ∧ �σ(2k−1)σ (2k), (9)

where ||H ||2 = ∑
α λ2

α and the index l counts the factors λ2
αθi ∧ θ j which appear when the wedge product is distributed 

over the sum. In terms of the permutations S2k , it is possible to verify that the terms appear precisely 
(k

l

)
times.

Taking into account the pureness of the curvature form of M ,

ε(D) = (−1)k

(4π)kk!
k∑

l=0

(
k

l

)
||H||2l

∑
σ∈S2k

sgn(σ )cσ (1)σ (2) · · · cσ (2k−2l−1)σ (2k−2l)θσ (1) ∧ · · · ∧ θσ (2k). (10)

Therefore, the proof is finished by counting the factors and using Eq. (7). �
Proof of Theorem 1.1. The immersion i : L → M naturally induces i∗ : H2k(M, R) → H2k(L, R) and one is able to compute 
the integral 

∫
L i∗(ε(D)). In addition, L is an umbilic submanifold, then equation (8) holds. If ε(D) is an exact form, then 

the above integral is zero by Stokes’ theorem, and combined with (8) and the fact that the integrand is positive leads to a 
contradiction. Therefore, ε(D) �= 0 in H2k(M, R). �

This theorem generalizes the results in [19] and [4]. The first paper considers some obstructions to the dimension of 
leaves of an umbilic foliation, but with additional hypotheses; the foliation is assumed to be Riemannian. In the second 
article, the authors take into account a totally geodesic foliation, an hypothesis on the curvature of the ambient manifold; 
however, the normal bundle is integrable.

Corollary 4.2. Let M2k+p(c) be a Riemannian manifold of constant curvature c ≥ 0, endowed with a distribution D2k. Assume that D
is tangent to a compact submanifold L. If H2k(M) = 0 and L is an umbilic submanifold of M, then c = 0 and L is totally geodesic.

Corollary 4.3. Let F2k be a foliation of a Riemannian manifold M2k+p of pure curvature form. If there exists a compact umbilic leaf L
and the sectional curvatures of M are positive along L, then ε(D) �= 0.

Corollary 4.4. Let M2k+p be a homology sphere immersed with codimension one in the Euclidean space. If its sectional curvatures are 
positive along a certain umbilic or totally geodesic submanifold L2k of M, then there is no distribution D2k tangent to L.

There is an example in [3], which enlightens the importance of positive sectional curvature, and for the sake of com-
pleteness it is reproduced here.
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Example 3. Take the fibration π = F ◦ π1 : S3 × S3 → S2, where π1 : S3 × S3 → S3 is the projection onto the first factor and 
F : S3 → S2 is a fibration of the sphere by great circles. π defines a totally geodesic foliation Fπ of S3 × S3, where each 
leaf is S3 × S1 ⊂ S3 × S3. It follows that ε(Fπ) ∈ H4(S3 × S3) = 0, but sectional curvatures of planes generated by a vector 
tangent to S1 and any other vector on S3 is zero, and it agrees with the aforementioned corollary.

Remark 2. The reader should notice that for any given totally geodesic foliation F , F × F is always totally geodesic (and 
obviously even dimensional), and similar arguments assure analogous examples for a product of a fibration of S3 by great 
circles, since H2(S3 × S3) = 0.

Proof of Theorem 1.2. In this case, equation (4) is written as �L
i j = (||H ||2 + c)θi ∧ θ j , and

ε(D) = (−1)k(2k)!
(4π)kk!

k∑
l=0

(
k

l

)
||H||2lck−lθ1 ∧ · · · ∧ θ2k. (11)

The same argument as Theorem 1.1 completes the proof. �
Consider S2n × (0, 1) endowed with the metric g = f 2ds2

2n + dr2, such that ds2
2n is the induced canonical metric of S2n

and f is a smooth function on (0, 1). Let c > 0 be real constant. Then, for f = 1
c sin2(

√
cr), (S2n × (0, 1), g) has positive 

constant curvature c and for f = 1
c sinh2(

√−cr), (S2n × (0, 1), g) has negative constant curvature c (see [15]). By Proposi-
tion 2.21, page 46 of [16], {S2n × {r} : r ∈ (0, 1)} is an umbilic foliation. However, H2n(S2n × (0, 1)) is not trivial.

For topological reasons, regular foliations do not exist on even dimensional spheres. Therefore,

Corollary 4.5. Euclidean spheres do not admit umbilic foliations of odd codimension.

Proof of Theorem 1.3. Take the cup product between ε(F) and ν and integrate it over M . From the definition of ε(F),∫
M

ε(F) ∧ ν = 1

32π2

∑
σ∈S4

sgn(σ )

∫
M

�L
σ (1)σ (2) ∧ �L

σ (3)σ (4) ∧ ν

= 1

32π2

(
p + 4

4

)∫
M

γ L
4 .

Theorem 5 in [8], together with the definition of higher-order sectional curvatures, implies that the fourth sectional 
curvatures of L are nonnegative. This completes the proof. �
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