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A maximum principle is established for minimal solutions to the system �u −∇W (u) = 0, 
with a potential W vanishing at the boundary of a closed convex set C0 ⊂ R

m , which is 
either C2 smooth or coincides with a point {a}.
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r é s u m é

Nous établissons un principe du maximum pour les solutions minimales du système �u −
∇W (u) = 0, dont le potentiel W s’annule à la frontière d’un ensemble fermé convexe C0 ⊂
R

m , de classe C2 ou réduit à un point {a}.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of the maximum principle

We will consider the system

�u − ∇W (u) = 0, u : A →R
m, A ⊂R

n, (1)

which is the Euler–Lagrange equation of the free energy functional J (u; A) = ∫
A

{
1
2 |∇u|2 + W (u)

}
dx. Assuming that the 

potential W satisfies:

(a) W ∈ C1(Rm; R), W (a) = 0 for some a ∈R
m , W ≥ 0,

(b) there exists r0 > 0 such that for every ξ ∈ R
m with |ξ | = 1: (0, r0) � r → W (a + rξ) is strictly increasing,

the following maximum principle was proved in [1].
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Theorem 1.1. Let A ⊂R
n be an open, connected, bounded set, with ∂ A Lipschitz, and suppose that v(·) ∈ W 1,2(A; Rm) ∩ L∞(A; Rm)

minimizes J (u; A) subject to its boundary conditions on ∂ A:

J (v; A) = min{ J (u; A) : u = v on ∂ A}.
Then, if there holds |v(x) − a| ≤ r on ∂ A, for some r > 0 with 0 < 2r ≤ r0 , there also holds |v(x) − a| ≤ r on A.

The scope of this paper is to establish a generalization of Theorem 1.1, by considering potentials W that vanish at the 
boundary of a closed convex set C0 ⊂ R

m , which is either C2 smooth or coincides with a point {a}. We mention that the 
convexity assumption is essential for similar problems involving systems of PDEs (cf. [6,12,13]). Assuming that

(i) W ∈ C1(Rm; R), with W
∣∣
∂C0

= 0, W ≥ 0 on Rm \ C0,
(ii) there exists r0 > 0 such that for every outer unit normal vector ξ at the point p ∈ ∂C0 (|ξ | = 1, if C0 = {a}): (0, r0) �

r → W (p + rξ) is increasing, and moreover W (p + r0ξ) > 0,

we can state the following maximum principle.

Theorem 1.2. Let A ⊂ R
n be an open, connected, bounded set, with ∂ A Lipschitz, and v ∈ W 1,2(A; Rm) ∩ L∞(A; Rm). Suppose that 

v minimizes J (u; A) subject to its boundary conditions on ∂ A,

J (v; A) = min{ J (u; A) : u = v on ∂ A}.
Then, if there holds

d(x) := d(v(x), C0) ≤ r on ∂ A, for some r > 0 with 0 < 2r ≤ r0, (2)

where d is the Euclidean distance, there also holds

d(x) ≤ r on A. (3)

Moreover, the attainment of equality in (3) at an interior point of A,1

d(x̂) = r, for some x̂ ∈ A, (4)

implies that d(x) = r, ∀x ∈ A, and in addition if C0 is strictly convex, v(x) ≡ constant in A.

The following extension is also true:

Theorem 1.3. Let A ⊂ R
n be an open, connected, bounded set, with ∂ A Lipschitz, and let ∂D A 
= ∅ be a Lipschitz portion of ∂ A. As-

sume that v(·) ∈ W 1,2(A; Rm) ∩ L∞(A; Rm) minimizes J (u; A) subject to its boundary conditions on ∂D A: J (v; A) = min{ J (u; A) :
u = v on ∂D A}. Then, the condition d(v(x), C0) ≤ r on ∂D A, 0 < 2r ≤ r0 , implies the same conclusions as in Theorem 1.2 above.

Note that the strict monotonicity assumption (b) in Theorem 1.1 has been weakened. Theorem 1.2 is a corollary of the 
replacement result established in Lemma 3.2 below. For u(·) ∈ W 1,2(A; Rm) ∩ L∞(A; Rm), satisfying the boundary condition 
(2), it is shown that if d(u(x), C0) > r on a non-negligible subset, then there exists a map ũ coinciding with u on ∂ A, and 
having less energy. To construct the competitor ũ, we utilize the following decomposition of u:

u(x) = p(x) + (u(x) − p(x)), (5)

where p(x) := p(u(x)) is the projection of u(x) onto C0. Next, we define the distance function d(x) := d(u(x), C0) = |u(x) −
p(x)|, and consider a deformation of u of the form:

ũ(x) = p(x) + g(d(x))(u(x) − p(x)), (6)

where g : R → [0, ∞) is a suitable locally Lipschitz function. We point out that the above expression of ũ by-passes the 
difficulty encountered in [1], which utilizes the normal vector: n(x) := u(x)−a

|u(x)−a| if u(x) 
= a, and n(x) := 0 if u(x) = a, and the 
polar representations of u (respectively ũ): u(x) = a +|u(x) −a|n(x) (resp. ũ(x) = a + f (|u(x) −a|)n(x)), with f :R → [0, ∞), 
locally Lipschitz. Indeed, from (6), the computation of |∇ũ| is elementary. In addition, the decomposition (5) allows us to 
deal in one shot with the point case (where p(x) ≡ a, cf. Theorem 1.1), as well as with the case of smooth convex sets.

1 We are indebted to A. Savas-Halilaj for suggesting the use of the usual maximum principle at this point. The strong maximum principle part of the 
theorem follows from the usual maximum principle as developed in [12] and [13].
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2. Comparison with the usual maximum principle

2 The theorems above are different from the usual maximum principle in the following respects:

(a) W is not convex, hence the usual maximum principle is not valid even for the scalar case m = 1;
(b) the monotonicity condition (ii) on W is extremely mild, and allows applicability in situations where degeneracy is 

natural (cf. [3]);
(c) the usual maximum principle is a calculus fact and applies to all solutions. This is not true for the result above.

Consider the O.D.E.

u′′ − W ′(u) = 0, u : R →R, with W : R →R, W (u) = 1

4
(u2 − 1)2. (7)

Notice that (7) has periodic solutions for r > 0 as small as desired such that minR u = −1 + r and maxR u = 1 − r. By 
choosing A = (0, T ) such that u(0) = u(T ) = 1 − r, and C0 = {1}, we see that Theorem 1.1 does not apply to these solutions. 
Similarly, for the potential H(u) = 1 + cos(πu), and for C0 = [1, 3], the previous periodic solution u does not satisfy the 
maximum principle of Theorem 1.2.

The following example shows that Theorem 1.1 does not apply even to local minimizers (stable solutions to (1), defined 
in terms of the definiteness of sign of the second variation). Consider the scalar P.D.E.

ε2�u − W ′(u) = 0 in �,
∂u

∂n

∣∣∣
∂�

= 0, (8)

where W is as in (7) above and � is a dumbbell domain. It is well known (cf. [5,9,10]) that for ε > 0 sufficiently small, (8)
has a stable solution which on the left and right of the neck is as close to −1 and +1, respectively, as desired (by taking 
ε > 0 sufficiently small). By choosing the set A = � \ B , with B ⊂ � a closed ball located on the right of the neck, and 
∂D A = ∂ B , we can secure that |u(x) − 1| ≤ r on ∂D A, and therefore we see that Theorem 1.3 does not apply.

The solutions to (1) for which Theorems 1.2 and 1.3 apply are usually called minimal. They have the property that they 
minimize the free energy with respect to their Dirichlet values on the boundary of any open bounded subset of their domain 
of definition. This is reminiscent of a familiar property of minimal surfaces. That it is shared by the minimal solutions is 
not surprising, since the functional J is linked to the perimeter functional if scaled appropriately. More precisely, it is well 
known that the Gamma limit under a blow-down of J is the perimeter functional (cf. [11] for the scalar case, and [2] for 
the vector), and that the level sets of the rescaled minimizers converge to minimal surfaces.

3. Proof of the maximum principle

In what follows C0 ⊂ R
m is a closed convex set, which is either C2 smooth or coincides with a point {a}. We first 

compute |∇ũ|2 for the map ũ defined in (6), utilizing the properties of the projection p(x).

Proposition 3.1. Let A ⊂ R
n open and bounded, with Lipschitz boundary, let u(·) ∈ W 1,2(A; Rm) ∩ L∞(A; Rm), and let ũ(x) =

p(x) + g(d(x))(u(x) − p(x)), where p(x) := p(u(x)) is the projection of u(x) onto C0 , d(x) := d(u(x), C0) = |u(x) − p(x)|, and 
g : R → [0, ∞) is a locally Lipschitz function. Then, ũ(·) ∈ W 1,2(A; Rm) ∩ L∞(A; Rm), and

|∇ũ|2 = |∇p|2 + (
f ′(d)

)2|∇d|2 + (
g(d)

)2(|∇(u − p)|2 − |∇d|2) + 2g(d)

n∑
i=1

〈pxi , uxi − pxi 〉,

where we have set f (s) := sg(s). In addition, if | f ′| ≤ 1 and 0 ≤ g ≤ 1, then |∇ũ|2 ≤ |∇u|2 .

The proof of the maximum principle is based on the following cut-off lemma:

Lemma 3.2. Let A ⊂ R
n, open, bounded, connected, with ∂ A Lipschitz, and let W satisfy Hypotheses (i), (ii) above. Suppose that 

u(·) ∈ W 1,2(A; Rm) ∩ L∞(A; Rm). If the following two conditions hold,

(I) d(x) := d(u(x), C0) ≤ r on ∂ A, 0 < 2r ≤ r0 ,
(II) Ln(A ∩ {d(x) > r}) > 0 (Ln(E), the n-dimensional Lebesgue measure),

then, there is ũ(·) ∈ W 1,2(A; Rm) ∩ L∞(A; Rm) such that

2 We want to thank Prof. N.D. Alikakos for providing the examples of this section.
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ũ = u on ∂ A, (9a)

d̃(x) := d(ũ(x), C0) ≤ r, on A, (9b)

J (ũ; A) < J (u; A). (9c)

Proof. Case 1. We will first establish the lemma under the additional hypothesis:

d(x) ≤ r0. (10)

The argument here is easy since u stays in the monotonicity region of W about C0. Let f (s) = min{s, r} = g(s)s. Clearly, 
| f ′| ≤ 1 and 0 ≤ g ≤ 1. By Proposition 3.1, ũ(x) = p(x) + g(d(x))(u(x) − p(x)) satisfies∫

A

|∇ũ(x)|2dx ≤
∫
A

|∇u(x)|2dx. (11)

Having a closer look we see that in case of equality in (11), then

0 =
∫
A

|∇ũ|2dx −
∫
A

|∇u|2dx ≤
∫
A

|∇d|2(( f ′(d))2 − 1)dx ≤ −
∫

A∩{d>r}
|∇d|2dx,

from which it follows that ∇d = 0 a.e. on A ∩ {d > r}, and therefore ∇(d̃ − d) = 0 a.e. on A, where d̃(x) = f (d(x)) via (6). 
Since d̃ − d ∈ W 1,2(A), we have by connectedness d̃(x) − d(x) = constant a.e. in A, and from d̃ − d = 0 on ∂ A in the sense 
of trace, we obtain d̃(x) − d(x) = 0 a.e. in A, in contradiction to assumption (II) in Lemma 3.2. Therefore we have strict 
inequality in (11).

On the other hand, since f (d) = g(d)d ≤ d ≤ r0, we have by (ii):∫
A

W
(

p(x) + g(d(x))(u(x) − p(x))
)
dx ≤

∫
A

W
(

p(x) + (u(x) − p(x))
)
dx,

∫
A

W (ũ(x))dx ≤
∫
A

W (u(x))dx,

hence Case 1 is settled. Notice that in this case the strictness in (9c) was obtained via the gradient term.
Case 2. Assume

Ln(A ∩ {d > r0}) > 0. (12)

Consider the following cut-off functions:

α(s) :=

⎧⎪⎨
⎪⎩

1 for s ≤ r
2r−s

r for r ≤ s ≤ 2r

0 for s ≥ 2r,

f (s) = min{s, r}α(s) = g(s)s.

Again, it is clear that | f ′| ≤ 1 and 0 ≤ g(s) ≤ 1, thus ũ(x) = p(x) + g(d(x))(u(x) − p(x)) satisfies thanks to Proposition 3.1:

|∇ũ(x)|2 ≤ |∇u(x)|2. (13)

We note in passing that ũ is a reflection of u along d(u, C0) = r, and thus (13) is expected. Unlike in Case 1, the strictness 
of the inequality in (9c) will follow from the potential term. We will need the following proposition.

Proposition 3.3. (‘Continuity’ of Sobolev functions, cf. [4].) Let A ⊂ R
n, open, bounded and connected, with Lipschitz boundary, and 

assume that f ∈ W 1,2(A; R) satisfies

f ≤ r̂ on ∂ A (in the sense of trace) and Ln(A ∩ {ŝ < f }) > 0 for some r̂ < ŝ. (14)

Then, Ln(A ∩ {r̂ < f ≤ ŝ}) > 0.

Proof. Let σ , τ : A →R be defined by

σ(x) = min{ f (x), ŝ} =
{

f (x) for x ∈ E1 := A ∩ { f ≤ r̂}
ŝ for x ∈ E3 := A ∩ {ŝ < f }, τ (x) = max{σ(x), r̂} =

{
r̂ for x ∈ E1

ŝ for x ∈ E3.
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Suppose, for the sake of contradiction, that Ln(A ∩ {r̂ < f ≤ ŝ}) = 0. Therefore, τ is a step function. Thus ∇τ = 0 a.e. 
in A. On the other hand, σ , τ are in W 1,2(A; R) (cf. [8, p. 130]). This and the connectedness of A imply that τ ≡ constant
(cf. [7, p. 307]). Hence τ ≡ ŝ since Ln(E3) > 0. It follows that Ln(E1) = 0 and f > ŝ a.e. in A. Thus, f ≥ ŝ on ∂ A in the 
sense of trace, which is contradicting (14). The proof is complete. �

Conclusion: Let ε > 0 such that W (u) > 0 on r0 ≤ d(u, C0) ≤ r0 + ε . We define the sets

E1 := A ∩ {d ≤ r0}, E2 := A ∩ {r0 < d ≤ r0 + ε}, E3 := A ∩ {d > r0 + ε}.
From (12), we obtain that in the event that Ln(E2) = 0, then necessarily Ln(E3) > 0. But d ≤ r < r0 on ∂ A, hence by 
Proposition 3.3:

Ln(E2) > 0. (15)

Therefore, (15) holds under any circumstances. On A ∩ {0 ≤ d ≤ 2r} we have:

W (ũ(x)) = W
(

p(x) + g(d(x)(u(x) − p(x))
) ≤ W

(
p(x) + (u(x) − p(x))

) = W (u(x)),

since g(d)d = f (d) ≤ d ≤ 2r ≤ r0. On the other hand, on A ∩ {d > 2r} we have 0 = W (ũ(x)) ≤ W (u(x)), while on E2: 
0 = W (ũ(x)) < W (u(x)). Therefore, we have J (ũ; A) < J (u; A) and the proof of Lemma 3.2 is complete. �

Now the proof of Theorem 1.2 is straightforward.

Proof of Theorem 1.2. We proceed by contradiction. So suppose that (3) does not hold, hence Ln(A ∩ d(v(x), C0) > r}) > 0. 
But this contradicts the minimality of v by Lemma 3.2. Thus (3) holds. Next, suppose (4) holds and notice that d2 = d2(v, C0)

satisfies

�(d2)(x) = 2d(x)〈∇d(x),∇W (v(x))〉 +
n∑

i=1

D2(d2)(v(x))(vxi (x), vxi (x)) ≥ 0,

for every x ∈ A such that 0 < d(v(x), C0) ≤ r0, thanks to Hypothesis (ii) on W , to the convexity of the function u → d2(u, C0)

in the complement of C0, and to the fact that the minimizer v solves system (1). By the strong maximum principle, it follows 
that d(v, C0) is constant in A. In addition, if C0 is strictly convex, then the function u → d2(u, C0) is strictly convex in the 
complement of C0. This implies that

�(d2)(x) ≥ ε|∇v(x)|2, ∀x ∈ A : 0 < d(v(x), C0) ≤ r0,

for some ε > 0. Thus, ∇v ≡ 0 since d(v, C0) is constant, and as a consequence v is constant in A. �
Proof of Theorem 1.3. First we note that if in Lemma 3.2, specifically in condition (I), one replaces ∂ A with ∂D A, then 
the same conclusion (9) holds, where ∂ A is now replaced with ∂D A. The argument is completely unaltered. Similarly, in 
Proposition 3.3, ∂ A is replaced with ∂D A, without change in the proof. The proof of Theorem 1.3 is complete. �
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