

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical analysis/Functional analysis

Distance formulas in group algebras

Formules de distance dans les groupes algébriques

Heybetkulu Mustafayev

Yuzuncu Yil University, Faculty of Sciences, Department of Mathematics, 65080, Van, Turkey

ARTICLE INFO

Article history: Received 13 February 2016 Accepted after revision 5 April 2016 Available online 16 April 2016

Presented by the Editorial Board

ABSTRACT

Let *G* be a locally compact amenable group, A(G) and B(G) be the Fourier and the Fourier–Stieltjes algebra of *G*, respectively. For a given $u \in B(G)$, let $\mathcal{E}_u := \{g \in G : |u(g)| = 1\}$. The main result of this paper particularly states that if $||u||_{B(G)} \le 1$ and $\overline{u(\mathcal{E}_u)}$ is countable (in particular, if \mathcal{E}_u is compact and scattered), then

$$\lim_{n\to\infty} \left\| u^n v \right\|_{A(G)} = \operatorname{dist}\left(v, I_{\mathcal{E}_u} \right), \ \forall v \in A(G),$$

where $I_{\mathcal{E}_u} = \{ v \in A(G) : v(g) = 0, \forall g \in \mathcal{E}_u \}$. © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit *G* un groupe compact moyennable et soient *A*(*G*) et *B*(*G*) l'algèbre de Fourier et l'algèbre de Fourier–Stieltjes de *G*, respectivement. Pour un $u \in B(G)$ donné, posons $\mathcal{E}_u := \{g \in G : |u(g)| = 1\}$. Le résultat principal de cet article établit que, si $||u||_{B(G)} \le 1$ et si $\overline{u(\mathcal{E}_u)}$ est dénombrable (en particulier si \mathcal{E}_u est compacte et éparpillé), alors

 $\lim_{n \to \infty} \|u^n v\|_{A(G)} = \operatorname{dist} \left(v, I_{\mathcal{E}_u}\right), \, \forall v \in A(G),$

où $I_{\mathcal{E}_u} = \{ v \in A(G) : v(g) = 0, \forall g \in \mathcal{E}_u \}.$ © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let *X* be a complex Banach space and let *B*(*X*) be the algebra of all bounded linear operators on *X*. As usual, by σ (*T*) we denote the spectrum of $T \in B(X)$. Throughout this paper, we always assume that *A* is a complex, commutative, and semisimple Banach algebra. By Σ_A we will denote the Gelfand space of *A* equipped with the *w**-topology and by \hat{a} , where $\hat{a}(\gamma) = \gamma(a), \gamma \in \Sigma_A$, the Gelfand transform of $a \in A$. A linear mapping $T : A \to A$ is called a *multiplier* of *A* if (Ta) b = aT(b) holds for all $a, b \in A$. The set *M*(*A*) of all multipliers of *A* is a commutative, unital, closed, and full subalgebra of *B*(*A*). The

http://dx.doi.org/10.1016/j.crma.2016.04.002

E-mail address: hsmustafayev@yahoo.com.

¹⁶³¹⁻⁰⁷³X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Gelfand space of M(A) may be represented as the disjoint union of Σ_A and hull (A), where Σ_A is canonically embedded in $\Sigma_{M(A)}$ and hull (A) denotes the hull of A in $\Sigma_{M(A)}$.

For each $T \in M(A)$, there is a uniquely determined bounded continuous function $\widehat{T}(\|\widehat{T}\|_{\infty} \leq \|T\|)$ on Σ_A such that

$$(Ta)(\gamma) = \widehat{T}(\gamma)\widehat{a}(\gamma), \ \forall a \in A, \ \gamma \in \Sigma_A.$$

In fact, \hat{T} is the restriction to Σ_A of the Gelfand transform of T on $\Sigma_{M(A)}$. The function \hat{T} is often called the *Helgason–Wang* representation of T [10,12]. It follows from the preceding formula that if $\hat{T}(\gamma) = 0$ for all $\gamma \in \Sigma_A$, then T = 0. If $T \in M(A)$, by Gelfand theory,

$$\sigma(T) = \sigma_{M(A)}(T) = \left\{ \widehat{T}(\phi) : \phi \in \Sigma_{M(A)} \right\}.$$

Since Σ_A is a subset of $\Sigma_{M(A)}$, we have $\overline{\widehat{T}(\Sigma_A)} \subseteq \sigma(T)$ for all $T \in M(A)$.

2. Distance formulas

Recall that an operator T on a Banach space that satisfies

$$C_T := \sup_{n \ge 0} \left\| T^n \right\| < \infty$$

is called *power bounded* (if *T* is power bounded, then by passing to an equivalent norm *T* can be made contractive). If $T \in B(X)$ is power bounded, then

$$E_T := \{x \in X : \text{l.i.m.}_n || T^n x || = 0\}$$

is a closed *T*-invariant subspace, where l.i.m. is a fixed Banach limit (it can be seen that l.i.m._n $||T^n x|| = 0$ implies $\lim_{n\to\infty} ||T^n x|| = 0$). If $x_0 \in E_T$, then from the relations

$$||T^n x|| \le ||T^n x - T^n x_0|| + ||T^n x_0|| \le C_T ||x - x_0|| + ||T^n x_0||,$$

we have

$$\lim_{n \to \infty} \|T^n x\| \leq C_T \operatorname{dist} (x, E_T).$$

(2.1)

We have written $D := \{z \in \mathbb{C} : |z| < 1\}$ and $\Gamma := \{z \in \mathbb{C} : |z| = 1\}$. If $T \in B(X)$ is power bounded, then clearly, $\sigma(T) \subseteq \overline{D}$. A discrete version of [14, Theorem 5.5.10] states that if $T \in B(X)$ is a contraction and the unitary spectrum $\sigma(T) \cap \Gamma$ of T is countable, then

$$\lim_{n \to \infty} \|T^n x\| = \operatorname{dist}(x, E_T), \ \forall x \in X.$$

Now, let A be a commutative semisimple Banach algebra and let T be a power-bounded multiplier of A. Then

$$\mathcal{I}_T := \left\{ a \in A : \text{l.i.m.}_n \, \left\| \, T^n a \right\| = 0 \right\}$$

is a closed ideal in *A*. Notice that $|\widehat{T}(\gamma)| \leq 1$ for all $\gamma \in \Sigma_A$. We put

$$\mathcal{E}_T := \left\{ \gamma \in \Sigma_A : \left| \widehat{T} \left(\gamma \right) \right| = 1 \right\}.$$

Recall that a commutative Banach algebra A is said to be *regular* if, given a closed subset S of Σ_A and $\gamma \in \Sigma_A \setminus S$, there exists an $a \in A$ such that $\hat{a}(S) = \{0\}$ and $\hat{a}(\gamma) \neq 0$. Let A be a regular semisimple Banach algebra and $A_{00} := \{a \in A : \text{supp} \hat{a} \text{ is compact}\}$. For a closed subset S of Σ_A , there are two distinguished closed ideals in A with hull equal to S, namely

$$I_{S} := \{ a \in A : \widehat{a}(\gamma) = 0, \forall \gamma \in S \}$$

is the largest closed ideal whose hull is S and $J_S := \overline{J_S^0}$ is the smallest closed ideal whose hull is S, where

$$J_{S}^{0} := \{a \in A_{00} : \operatorname{supp} \widehat{a} \cap S = \emptyset\}.$$

The set *S* is said to be a set of synthesis for *A* if $I_S = J_S$ [11, Section 8.3].

Proposition 2.1. Let A be a commutative, semisimple, and regular Banach algebra and let T be a power-bounded multiplier of A. Then hull $(\mathcal{I}_T) = \mathcal{E}_T$.

Proof. If $\gamma \in \mathcal{E}_T$ and $a \in \mathcal{I}_T$, then as

$$\left\|T^{n}a\right\| \geq \left|\widehat{T}(\gamma)\right|^{n}\left|\widehat{a}(\gamma)\right| = \left|\widehat{a}(\gamma)\right|, \ \forall n \in \mathbb{N},$$

we have $|\hat{a}(\gamma)| \leq \text{l.i.m.}_n ||T^n a|| = 0$. This shows that $\mathcal{E}_T \subseteq \text{hull}(\mathcal{I}_T)$. For the opposite inclusion, assume that $|\hat{T}(\gamma_0)| < 1$ for some $\gamma_0 \in \Sigma_A$. Then there is a compact neighborhood U of γ_0 such that $|\widehat{T}(\gamma)| < 1$ for all $\gamma \in \overline{U}$. Let K be a compact subset of Σ_A such that $\gamma_0 \in K \subset U$. Then there exists an $a \in A$ such that $\widehat{a}(K) = \{1\}$ and $\widehat{a}(\Sigma_A \setminus U) = \{0\}$. As supp $\widehat{a} \subseteq \overline{U}$, we have $|\widehat{T}(\gamma)| < 1$ for all $\gamma \in \operatorname{supp} \widehat{a}$. Since $\operatorname{supp} \widehat{a}$ is compact, using the formula

$$\overline{\lim_{n \to \infty}} \|T^n a\|^{\frac{1}{n}} = \max\left\{ \left| \widehat{T} (\gamma) \right| : \gamma \in \operatorname{supp} \widehat{a} \right\}$$

[12, Proposition 4.7.8], we have $\lim_{n\to\infty} ||T^na|| = 0$ and therefore, $a \in \mathcal{I}_T$. As $\hat{a}(\gamma_0) = 1$, we obtain that $\gamma_0 \notin \text{hull}(\mathcal{I}_T)$. \Box

The same result was obtained in [9, Theorem 2.6]. Our proof is shorter and different.

If $T \in M(A)$, then clearly,

$$\widehat{T}(\mathcal{E}_T) \subseteq \sigma(T) \cap \Gamma$$

We now give an example of a multiplier $T \in M(A)$ such that $\Gamma \subseteq \sigma(T)$, but $\widehat{T}(\mathcal{E}_T)$ is finite.

Let G be a locally compact Abelian group with dual group \widehat{G} . As usual, by $L^1(G)$ and M(G) respectively, we denote the group algebra and the convolution measure algebra of *G*. For every $\mu \in M(G)$, the convolution operator $T_{\mu}: L^{1}(G) \rightarrow M(G)$ $L^{1}(G)$, defined by $T_{\mu}f = \mu * f$, $f \in L^{1}(G)$, is a multiplier of $L^{1}(G)$. By Wendel-Helson's theorem [10, Theorem 0.1.1], every multiplier of $L^1(G)$ is obtained in this way and the map $\mu \mapsto T_{\mu}$ is an isometric isomorphism. In other words, $M(L^1(G)) = M(G)$. By \hat{f} and $\hat{\mu}$ respectively, we will denote the Fourier and the Fourier–Stieltjes transform of $f \in L^1(G)$ and $\mu \in M(G)$. Clearly, $\widehat{T_{\mu}}(\gamma) = \widehat{\mu}(\gamma), \gamma \in \widehat{G}$.

For $n \in \mathbb{N}$, by μ^n we denote the *n*-th convolution power of $\mu \in M(G)$. A measure $\mu \in M(G)$ is said to be power bounded if $\sup_{n\geq 0} \|\mu^n\|_1 < \infty$. If $\mu \in M(G)$ is power bounded, then

$$\mathcal{I}_{\mu} := \left\{ f \in L^{1}(G) : \text{l.i.m.}_{n} \| \mu^{n} * f \|_{1} = 0 \right\}$$

is a closed ideal in $L^{1}(G)$. Clearly, $\mathcal{I}_{T_{\mu}} = \mathcal{I}_{\mu}$. For a power-bounded measure $\mu \in M(G)$, we have $|\widehat{\mu}(\chi)| \leq 1$ for all $\chi \in \widehat{G}$. If

$$\mathcal{E}_{\mu} := \left\{ \chi \in \widehat{G} : |\widehat{\mu}(\chi)| = 1 \right\},\$$

then as $\widehat{T_{\mu}} = \widehat{\mu}$, we have $\mathcal{E}_{T_{\mu}} = \mathcal{E}_{\mu}$. By Proposition 2.1 (or [9, Theorem 2.6]), hull $(\mathcal{I}_{\mu}) = \mathcal{E}_{\mu}$. Recall that the measure $\mu \in M(G)$ has *independent powers* if $\mu^n \perp \mu^m$, whenever $0 \le m < n < \infty$. Recall also that a measure $\mu \in M(G)$ is said to be *Hermitian* if $\mu(-\Delta) := \overline{\mu(\Delta)}$ for each Borel subset Δ of G. It was proved in [5, Theorem 6.8.1] that if $\mu \in M(G)$ is a Hermitian probability measure with independent powers, then $\sigma_{M(G)}(\mu) = \overline{D}$. As

$$\sigma\left(T_{\mu}\right) = \sigma_{M\left(L^{1}\left(G\right)\right)}\left(T_{\mu}\right) = \sigma_{M\left(G\right)}\left(\mu\right) = \overline{D},$$

we have that $\Gamma \subseteq \sigma(T_{\mu})$. On the other hand, since $\hat{\mu}$ is real-valued, $\widehat{T_{\mu}}(\mathcal{E}_{T_{\mu}}) = \hat{\mu}(\mathcal{E}_{\mu}) \subseteq \{-1, 1\}$.

A locally compact Hausdorff space Ω is said to be *scattered* if it contains no non-empty compact perfect subset. For example, scattered subsets of the complex plane are precisely countable sets. A locally compact Abelian group is scattered if and only if it is discrete. Recall [12, Lemma 4.8.3] that Ω is scattered if and only if every continuous function on Ω vanishing at $\{\infty\}$ has countable range.

The main result of this paper is the following.

Theorem 2.2. Let A be a commutative, semisimple, and regular Banach algebra and let T be a contractive multiplier of A. Suppose that \mathcal{E}_T is a set of synthesis for A and $\widehat{T}(\mathcal{E}_T)$ is countable. Then

$$\lim_{n\to\infty} \|T^n a\| = \operatorname{dist}(a, I_{\mathcal{E}_T}), \ \forall a \in A,$$

where $I_{\mathcal{E}_T} = \{a \in A : \widehat{a}(\gamma) = 0, \forall \gamma \in \mathcal{E}_T\}$. In particular, if \mathcal{E}_T is a singleton, say $\mathcal{E}_T = \{\gamma\}$ and $\{\gamma\}$ is a set of synthesis for A, then

$$\lim_{n\to\infty} \|T^n a\| = \left|\widehat{a}(\gamma)\right|, \forall a \in A.$$

For the proof of Theorem 2.2, we need some preliminary results.

Recall that the Wiener algebra \mathcal{A} is the space of all continuous functions f on Γ such that

$$\|f\|_{1} := \sum_{n \in \mathbb{Z}} \left| \widehat{f}(n) \right| < \infty,$$

where $\hat{f}(n)$ is the *n*-th Fourier coefficient of f. We denote by \mathcal{A}_+ the Banach algebra of all functions $f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n$ analytic on D and satisfying

$$\|f\|_1 := \sum_{n=0}^{\infty} \left|\widehat{f}(n)\right| < \infty.$$

The algebra A_+ can be considered as a subalgebra of A. If $T \in M(A)$ is power bounded, then for arbitrary $f \in A_+$, we can define $f(T) \in M(A)$, by

$$f(T) = \sum_{n=0}^{\infty} \widehat{f}(n) T^n.$$

Then, the mapping $f \mapsto f(T)$ is a homomorphism and $||f(T)|| \le C_T ||f||_1$. We say that T is a C_1 -multiplier if $\mathcal{I}_T = \{0\}$. It follows from Proposition 2.1 (or [9, Theorem 2.6]) that if T is a C_1 -multiplier on a regular semisimple Banach algebra A, then $\overline{T}(\Sigma_A) \subseteq \sigma(T) \cap \Gamma$.

Lemma 2.3. Let A be a commutative, semisimple, and regular Banach algebra and let T be a contractive C_1 -multiplier on A. If $\widehat{T}(\Sigma_A)$ is countable, then T is a surjective isometry.

Proof. Let $K := \overline{\widehat{T}(\Sigma_A)}$ and let

$$I_K := \{ f \in \mathcal{A} : f(K) = \{ 0 \} \}; \ I_K^+ := \{ f \in \mathcal{A}_+ : f(K) = \{ 0 \} \}$$

We know [8, Ch. XI, Section 7] that if *K* is an arbitrary compact countable subset of Γ , then the map $\alpha : \mathcal{A}_+ / I_K^+ \to \mathcal{A} / I_K$, defined by

$$\alpha \left(f + I_K^+ \right) = f + I_K, \ f \in \mathcal{A}_+,$$

is an isometric isomorphism. In other words, for every $f \in A$, there exists an $f_+ \in A_+$ such that $f = f_+$ on K and

$$||f_+ + I_K^+||_1 = ||f + I_K||_1.$$

Define a mapping $\beta : \mathcal{A} / I_K \to M(A)$, by

$$\beta(f+I_K) = f_+(T), \ f \in \mathcal{A}.$$

From the identity

$$\widehat{f_{+}\left(T\right)}\left(\gamma\right)=f_{+}\left(\widehat{T}\left(\gamma\right)\right)=f\left(\widehat{T}\left(\gamma\right)\right),\;\forall\gamma\in\Sigma_{A},$$

we can see that if $f \in A$ vanishes on K, then $\widehat{f_+(T)}$ vanishes on Σ_A and therefore, $f_+(T) = 0$. It follows that if $g \in A_+$ is another function for which $g(\xi) = f(\xi)$ for all $\xi \in K$, then $g_+(T) = f_+(T)$. Consequently, β is an algebra-homomorphism. Further, if $f^0_+ \in I^+_K$, then as $f^0_+(T) = 0$, we can write

$$\|f_{+}(T)\| = \|f_{+}(T) + f_{+}^{0}(T)\| \le \|f_{+} + f_{+}^{0}\|_{1},$$

which implies

$$||f_+(T)|| \le ||f_+ + I_K^+||_1 = ||f + I_K||_1.$$

Hence β is a contractive homomorphism. If $S := \beta (e^{-it} + I_K)$, then as $T = \beta (e^{it} + I_K)$ and $I = \beta (1 + I_K)$, we have TS = I and $||S|| \le 1$. This shows that T is a surjective isometry. \Box

Let *T* be a contraction on a Banach space *X* and let $T \neq E_T$ be the quotient operator induced by *T* on the quotient space $X \neq E_T$;

$$T \nearrow E_T : x + E_T \mapsto Tx + E_T, x \in X.$$

Lemma 2.4. If T is a contraction on a Banach space X, then

$$\lim_{n\to\infty} \left\| \left(T \swarrow E_T \right)^n (x + E_T) \right\| = \lim_{n\to\infty} \left\| T^n x \right\|, \ \forall x \in X.$$

580

$$d(x) := \lim_{n \to \infty} \left\| \left(T \swarrow E_T \right)^n (x + E_T) \right\| = \lim_{n \to \infty} \left\| T^n x + E_T \right\|.$$

Clearly, $d(x) \leq \lim_{n \to \infty} ||T^n x||$. On the other hand, since

$$d(x) = \inf_{n\geq 0} \left\| T^n x + E_T \right\|,$$

for any $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ and $y \in E_T$ such that

$$\|T^{n_0}x - y\| \le d(x) + \varepsilon.$$

It follows that

$$||T^{n+n_0}x|| \le ||T^{n+n_0}x - T^ny|| + ||T^ny|| \le d(x) + \varepsilon + ||T^ny||.$$

As $n \to \infty$, we have

 $\lim_{n\to\infty} \left\| T^n x \right\| \le d(x) + \varepsilon,$

so that $\lim_{n\to\infty} ||T^n x|| \le d(x)$. \Box

Now, we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. By Proposition 2.1 (or [9, Theorem 2.6]), hull $(\mathcal{I}_T) = \mathcal{E}_T$. Since \mathcal{E}_T is a set of synthesis for A, we have $\mathcal{I}_T = I_{\mathcal{E}_T}$. Therefore, A/\mathcal{I}_T is a regular semisimple Banach algebra whose Gelfand space is \mathcal{E}_T . Notice also that $\widehat{T/\mathcal{I}_T}(\mathcal{E}_T) = \widehat{T}(\mathcal{E}_T)$. Since the set $\widehat{T/\mathcal{I}_T}(\mathcal{E}_T)$ is countable, by Lemma 2.3, the operator T/\mathcal{I}_T is a surjective isometry on A/\mathcal{I}_T . Consequently, by Lemma 2.4 we can write

 $\lim_{n\to\infty} \|T^n a\| = \|a + \mathcal{I}_T\| = \operatorname{dist}\left(a, I_{\mathcal{E}_T}\right), \ \forall a \in A.$

If $\mathcal{E}_T = \{\gamma\}$ and $\{\gamma\}$ is a set of synthesis for *A*, then as dist $(a, I_{\mathcal{E}_T}) = |\widehat{a}(\gamma)|$, we have

$$\lim_{n\to\infty} \|T^n a\| = \left|\widehat{a}(\gamma)\right|, \ \forall a \in A.$$

The proof is complete. \Box

Next, we present several corollaries of Theorem 2.2.

Let *G* be a locally compact Abelian group and let $\mu \in M(G)$ be a power-bounded measure. The classical Foguel theorem [2] states that $\lim_{n\to\infty} \|\mu^n * f\|_1 = 0$ for all $f \in L^1(G)$ such that $\widehat{f}(0) = 0$ if and only if $\mathcal{E}_{\mu} = \{0\}$. In [6, Theorem 2], Granirer has proved that if $f \in L^1(G)$, then $\lim_{n\to\infty} \|\mu^n * f\|_1 = 0$ if and only if \widehat{f} vanishes on \mathcal{E}_{μ} .

Recall that the *coset ring* of a locally compact group G (not necessarily Abelian), denoted by $\mathcal{R}(G)$, is the smallest Boolean algebra of subsets of G containing left cosets of all subgroups of G. As in [3], define the *closed coset ring* $\mathcal{R}_c(G)$ of G, by

 $\mathcal{R}_{c}(G) = \{E \in \mathcal{R}(G_{d}) : E \text{ is closed in } G\},\$

where G_d is the algebraic group G with the discrete topology. As proved in [13, Lemma 6.1], if $\mu \in M(G)$ is power bounded, where G is Abelian, then $\mathcal{E}_{\mu} \in \mathcal{R}_c(\widehat{G})$. On the other hand, each subset of $\mathcal{R}_c(\widehat{G})$ is a set of synthesis for $L^1(G)$ [4, Theorem 3.9]. Consequently, \mathcal{E}_{μ} is a set of synthesis for $L^1(G)$.

Corollary 2.5. Let *G* be a locally compact Abelian group and let $\mu \in M(G)$ such that $\|\mu\|_1 \leq 1$. If $\overline{\hat{\mu}(\mathcal{E}_{\mu})}$ is countable (in particular, if \mathcal{E}_{μ} is compact and scattered), then

$$\lim_{n \to \infty} \left\| \mu^n * f \right\|_1 = \operatorname{dist} \left(f, I_{\mathcal{E}_{\mu}} \right), \ \forall f \in L^1 \left(G \right),$$

where $I_{\mathcal{E}_{\mu}} = \{f \in L^1(G) : \widehat{f}(\chi) = 0, \forall \chi \in \mathcal{E}_{\mu}\}$. In particular, if $\mathcal{E}_{\mu} = \{\chi\}$, then

$$\lim_{n \to \infty} \left\| \mu^n * f \right\|_1 = \left| \widehat{f}(\chi) \right|, \ \forall f \in L^1(G).$$

If *G* is a compact Abelian group, then $L^p(G)$ $(1 \le p < \infty)$ with the convolution as multiplication and the usual norm is a commutative, semisimple, and regular Banach algebra. The Gelfand space of $L^p(G)$ is \widehat{G} and the Gelfand transform of $f \in L^p(G)$ is just the Fourier transform of f. As \widehat{G} is discrete, every subset of \widehat{G} is a set of synthesis for $L^p(G)$. Further, for every $\mu \in M(G)$, the convolution operator $T_{\mu} : L^p(G) \to L^p(G)$, defined by $T_{\mu}f = \mu * f$, $f \in L^p(G)$, is a multiplier of $L^p(G)$ and $\|T_{\mu}\|_p \le \|\mu\|_1$. Moreover, we have $\widehat{T_{\mu}} = \widehat{\mu}$ and therefore, $\mathcal{E}_{T_{\mu}} = \mathcal{E}_{\mu}$.

Corollary 2.6. Let *G* be a compact Abelian group and let $\mu \in M(G)$ such that $\|\mu\|_1 \leq 1$. If $\widehat{\mu}(\mathcal{E}_{\mu})$ is countable (in particular, if \mathcal{E}_{μ} is finite), then

$$\lim_{n \to \infty} \left\| \mu^n * f \right\|_p = \mathsf{dist}\left(f, I_{\mathcal{E}_{\mu}}\right), \ \forall f \in L^p\left(G\right) \ \left(1$$

where $I_{\mathcal{E}_{\mu}} = \{ f \in L^{p}(G) : \widehat{f}(\chi) = 0, \forall \chi \in \mathcal{E}_{\mu} \}$. In particular, if $\mathcal{E}_{\mu} = \{\chi\}$, then

$$\lim_{n\to\infty}\left\|\mu^{n}*f\right\|_{p}=\left|\widehat{f}(\chi)\right|,\ \forall f\in L^{p}\left(G\right).$$

Let *G* be a locally compact (not necessarily Abelian) group. By A(G) and B(G) respectively, we denote the Fourier and the Fourier–Stieltjes algebra of *G*. With pointwise multiplication A(G) is a commutative, semisimple, and regular Banach algebra whose Gelfand space is *G* (via Dirac measures) [7]. For each $u \in B(G)$, the operator $L_u : A(G) \rightarrow A(G)$, defined by $L_u v = uv$, $v \in A(G)$, is a multiplier of A(G). If *G* is amenable, then every multiplier of A(G) is of this form and the map $u \mapsto L_u$ is isometric [1]. For a power-bounded element *u* of B(G), we put

$$\mathcal{E}_{u} := \{g \in G : |u(g)| = 1\}.$$

As proved in [9, Theorem 4.1], $\mathcal{E}_u \in \mathcal{R}_c(G)$. On the other hand, if *G* is amenable, then every subset of $\mathcal{R}_c(G)$ is a set of synthesis for *A*(*G*) [3, Lemma 2.2]. Therefore, in the case when *G* is amenable, \mathcal{E}_u is a set of synthesis for *A*(*G*).

Corollary 2.7. Let *G* be a locally compact amenable group and let $u \in B(G)$ such that $||u||_{B(G)} \le 1$. If $\overline{u(\mathcal{E}_u)}$ is countable (in particular, if \mathcal{E}_u is compact and scattered), then

$$\lim_{n\to\infty} \left\| u^n v \right\|_{A(G)} = \operatorname{dist}\left(v, I_{\mathcal{E}_u} \right), \ \forall v \in A(G),$$

where $I_{\mathcal{E}_u} = \{ v \in A(G) : v(g) = 0, \forall g \in \mathcal{E}_u \}$. In particular, if $\mathcal{E}_u = \{g\}$, then

$$\lim_{n \to \infty} \left\| u^n v \right\|_{A(G)} = \left| v(g) \right|, \ \forall v \in A(G).$$

Acknowledgements

The author is grateful to the referee for his many helpful remarks and suggestions.

References

- [1] A. Derighetti, Some results on the Fourier-Stieltjes algebra of a locally compact group, Comment. Math. Helv. 45 (1970) 219-228.
- [2] S.R. Foguel, On iterates of convolutions, Proc. Amer. Math. Soc. 47 (1975) 368–370.
- [3] B. Forrest, E. Kaniuth, A.T. Lau, N. Spronk, Ideals with bounded approximate identities in Fourier algebras, J. Funct. Anal. 203 (2003) 286–304.
- [4] J.E. Gilbert, On projections of $L^{\infty}(G)$ onto translation-invariant subspaces, Proc. Lond. Math. Soc. 19 (1969) 69–88.
- [5] C.C. Graham, O.C. McGehee, Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1979.
- [6] E.E. Granirer, On some properties of the Banach algebras $A_p(G)$ for locally compact groups, Proc. Amer. Math. Soc. 95 (1985) 375–381.
- [7] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973) 91-123.
- [8] J.P. Kahane, Series de Fourier Absolument Convergentes, Mir, Moscow, 1976 (in Russian).
- [9] E. Kaniuth, A. Lau, A. Ülger, Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras, J. Lond. Math. Soc. 81 (2010) 255–275.
- [10] R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, New York, 1971.
- [11] R. Larsen, Banach Algebras, Marcel Dekker, New York, 1973.
- [12] K.B. Laursen, M.M. Neumann, An Introduction to the Local Spectral Theory, Clarendon Press, Oxford, 2000.
- [13] B.M. Schreiber, Measures with bounded convolution powers, Trans. Amer. Math. Soc. 151 (1970) 405-431.
- [14] J. Van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Oper. Theory, Adv. Appl., vol. 88, Birkhäuser, Basel, Boston, Berlin, 1996.