Distance formulas in group algebras

Formules de distance dans les groupes algébriques

Heybetkulu Mustafayev
Yuzuncu Yil University, Faculty of Sciences, Department of Mathematics, 65080, Van, Turkey

A R T I C L E I N F O

Article history:

Received 13 February 2016
Accepted after revision 5 April 2016
Available online 16 April 2016
Presented by the Editorial Board

Abstract

Let G be a locally compact amenable group, $A(G)$ and $B(G)$ be the Fourier and the Fourier-Stieltjes algebra of G, respectively. For a given $u \in B(G)$, let $\mathcal{E}_{u}:=\{g \in G: \underline{|u(g)|=}$ $1\}$. The main result of this paper particularly states that if $\|u\|_{B(G)} \leq 1$ and $\overline{u\left(\mathcal{E}_{u}\right)}$ is countable (in particular, if \mathcal{E}_{u} is compact and scattered), then $$
\lim _{n \rightarrow \infty}\left\|u^{n} v\right\|_{A(G)}=\operatorname{dist}\left(v, I_{\mathcal{E}_{u}}\right), \forall v \in A(G)
$$ where $I_{\mathcal{E}_{u}}=\left\{v \in A(G): v(g)=0, \forall g \in \mathcal{E}_{u}\right\}$. © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit G un groupe compact moyennable et soient $A(G)$ et $B(G)$ l'algèbre de Fourier et l'algèbre de Fourier-Stieltjes de G, respectivement. Pour un $u \in B(G)$ donné, posons $\mathcal{E}_{u}:=$ $\{g \in G:|u(g)|=1\}$. Le résultat principal de cet article établit que, si $\|u\|_{B(G)} \leq 1$ et si $\overline{u\left(\mathcal{E}_{u}\right)}$ est dénombrable (en particulier si \mathcal{E}_{u} est compacte et éparpillé), alors

$$
\lim _{n \rightarrow \infty}\left\|u^{n} v\right\|_{A(G)}=\operatorname{dist}\left(v, I_{\mathcal{E}_{u}}\right), \forall v \in A(G)
$$

où $I_{\mathcal{E}_{u}}=\left\{v \in A(G): v(g)=0, \forall g \in \mathcal{E}_{u}\right\}$.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a complex Banach space and let $B(X)$ be the algebra of all bounded linear operators on X. As usual, by $\sigma(T)$ we denote the spectrum of $T \in B(X)$. Throughout this paper, we always assume that A is a complex, commutative, and semisimple Banach algebra. By Σ_{A} we will denote the Gelfand space of A equipped with the w^{*}-topology and by \widehat{a}, where $\widehat{a}(\gamma)=\gamma(a), \gamma \in \Sigma_{A}$, the Gelfand transform of $a \in A$. A linear mapping $T: A \rightarrow A$ is called a multiplier of A if $(T a) b=a T(b)$ holds for all $a, b \in A$. The set $M(A)$ of all multipliers of A is a commutative, unital, closed, and full subalgebra of $B(A)$. The

[^0]Gelfand space of $M(A)$ may be represented as the disjoint union of Σ_{A} and hull (A), where Σ_{A} is canonically embedded in $\Sigma_{M(A)}$ and hull (A) denotes the hull of A in $\Sigma_{M(A)}$.

For each $T \in M(A)$, there is a uniquely determined bounded continuous function $\widehat{T}\left(\|\widehat{T}\|_{\infty} \leq\|T\|\right)$ on Σ_{A} such that

$$
\widehat{(T a)}(\gamma)=\widehat{T}(\gamma) \widehat{a}(\gamma), \forall a \in A, \gamma \in \Sigma_{A}
$$

In fact, \widehat{T} is the restriction to Σ_{A} of the Gelfand transform of T on $\Sigma_{M(A)}$. The function \widehat{T} is often called the Helgason-Wang representation of $T[10,12]$. It follows from the preceding formula that if $\widehat{T}(\gamma)=0$ for all $\gamma \in \Sigma_{A}$, then $T=0$. If $T \in M(A)$, by Gelfand theory,

$$
\sigma(T)=\sigma_{M(A)}(T)=\left\{\widehat{T}(\phi): \phi \in \Sigma_{M(A)}\right\}
$$

Since Σ_{A} is a subset of $\Sigma_{M(A)}$, we have $\overline{T\left(\Sigma_{A}\right)} \subseteq \sigma(T)$ for all $T \in M(A)$.

2. Distance formulas

Recall that an operator T on a Banach space that satisfies

$$
C_{T}:=\sup _{n \geq 0}\left\|T^{n}\right\|<\infty
$$

is called power bounded (if T is power bounded, then by passing to an equivalent norm T can be made contractive). If $T \in B(X)$ is power bounded, then

$$
E_{T}:=\left\{x \in X: \text { l.i.m.n.n }\left\|T^{n} x\right\|=0\right\}
$$

is a closed T-invariant subspace, where l.i.m. is a fixed Banach limit (it can be seen that li.m. $n\left\|T^{n} x\right\|=0$ implies $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$). If $x_{0} \in E_{T}$, then from the relations

$$
\left\|T^{n} x\right\| \leq\left\|T^{n} x-T^{n} x_{0}\right\|+\left\|T^{n} x_{0}\right\| \leq C_{T}\left\|x-x_{0}\right\|+\left\|T^{n} x_{0}\right\|
$$

we have

$$
\begin{equation*}
\text { l.i.m. } \cdot n\left\|T^{n} x\right\| \leq C_{T} \operatorname{dist}\left(x, E_{T}\right) \tag{2.1}
\end{equation*}
$$

We have written $D:=\{z \in \mathbb{C}:|z|<1\}$ and $\Gamma:=\{z \in \mathbb{C}:|z|=1\}$. If $T \in B(X)$ is power bounded, then clearly, $\sigma(T) \subseteq \bar{D}$. A discrete version of [14, Theorem 5.5.10] states that if $T \in B(X)$ is a contraction and the unitary spectrum $\sigma(T) \cap \Gamma$ of T is countable, then

$$
\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=\operatorname{dist}\left(x, E_{T}\right), \forall x \in X
$$

Now, let A be a commutative semisimple Banach algebra and let T be a power-bounded multiplier of A. Then

$$
\mathcal{I}_{T}:=\left\{a \in A: \text { l.i.m. } \cdot n\left\|T^{n} a\right\|=0\right\}
$$

is a closed ideal in A. Notice that $|\widehat{T}(\gamma)| \leq 1$ for all $\gamma \in \Sigma_{A}$. We put

$$
\mathcal{E}_{T}:=\left\{\gamma \in \Sigma_{A}:|\widehat{T}(\gamma)|=1\right\}
$$

Recall that a commutative Banach algebra A is said to be regular if, given a closed subset S of Σ_{A} and $\gamma \in \Sigma_{A} \backslash S$, there exists an $a \in A$ such that $\widehat{a}(S)=\{0\}$ and $\widehat{a}(\gamma) \neq 0$. Let A be a regular semisimple Banach algebra and $A_{00}:=$ $\{a \in A$: supp \widehat{a} is compact $\}$. For a closed subset S of Σ_{A}, there are two distinguished closed ideals in A with hull equal to S, namely

$$
I_{S}:=\{a \in A: \widehat{a}(\gamma)=0, \forall \gamma \in S\}
$$

is the largest closed ideal whose hull is S and $J_{S}:=\overline{J_{S}^{0}}$ is the smallest closed ideal whose hull is S, where

$$
J_{S}^{0}:=\left\{a \in A_{00}: \operatorname{supp} \widehat{a} \cap S=\emptyset\right\}
$$

The set S is said to be a set of synthesis for A if $I_{S}=J_{S}$ [11, Section 8.3].
Proposition 2.1. Let A be a commutative, semisimple, and regular Banach algebra and let T be a power-bounded multiplier of A. Then $\operatorname{hull}\left(\mathcal{I}_{T}\right)=\mathcal{E}_{T}$.

Proof. If $\gamma \in \mathcal{E}_{T}$ and $a \in \mathcal{I}_{T}$, then as

$$
\left\|T^{n} a\right\| \geq|\widehat{T}(\gamma)|^{n}|\widehat{a}(\gamma)|=|\widehat{a}(\gamma)|, \quad \forall n \in \mathbb{N}
$$

we have $|\widehat{a}(\gamma)| \leq$ l.i.m. ${ }_{n}\left\|T^{n} a\right\|=0$. This shows that $\mathcal{E}_{T} \subseteq$ hull $\left(\mathcal{I}_{T}\right)$. For the opposite inclusion, assume that $\left|\widehat{T}\left(\gamma_{0}\right)\right|<1$ for some $\gamma_{0} \in \Sigma_{A}$. Then there is a compact neighborhood U of γ_{0} such that $|\widehat{T}(\gamma)|<1$ for all $\gamma \in \bar{U}$. Let K be a compact subset of Σ_{A} such that $\gamma_{0} \in K \subset U$. Then there exists an $a \in A$ such that $\widehat{a}(K)=\{1\}$ and $\widehat{a}\left(\Sigma_{A} \backslash U\right)=\{0\}$. As supp $\widehat{a} \subseteq \bar{U}$, we have $|\widehat{T}(\gamma)|<1$ for all $\gamma \in \operatorname{supp} \widehat{a}$. Since supp \widehat{a} is compact, using the formula

$$
\overline{\lim }_{n \rightarrow \infty}\left\|T^{n} a\right\|^{\frac{1}{n}}=\max \{|\widehat{T}(\gamma)|: \gamma \in \operatorname{supp} \widehat{a}\}
$$

[12, Proposition 4.7.8], we have $\lim _{n \rightarrow \infty}\left\|T^{n} a\right\|=0$ and therefore, $a \in \mathcal{I}_{T}$. As $\widehat{a}\left(\gamma_{0}\right)=1$, we obtain that $\gamma_{0} \notin$ hull $\left(\mathcal{I}_{T}\right)$.
The same result was obtained in [9, Theorem 2.6]. Our proof is shorter and different.
If $T \in M(A)$, then clearly,

$$
\overline{\widehat{T}\left(\mathcal{E}_{T}\right)} \subseteq \sigma(T) \cap \Gamma
$$

We now give an example of a multiplier $T \in M(A)$ such that $\Gamma \subseteq \sigma(T)$, but $\widehat{T}\left(\mathcal{E}_{T}\right)$ is finite.
Let G be a locally compact Abelian group with dual group \widehat{G}. As usual, by $L^{1}(G)$ and $M(G)$ respectively, we denote the group algebra and the convolution measure algebra of G. For every $\mu \in M(G)$, the convolution operator $T_{\mu}: L^{1}(G) \rightarrow$ $L^{1}(G)$, defined by $T_{\mu} f=\mu * f, f \in L^{1}(G)$, is a multiplier of $L^{1}(G)$. By Wendel-Helson's theorem [10, Theorem 0.1.1], every multiplier of $L^{1}(G)$ is obtained in this way and the map $\mu \mapsto T_{\mu}$ is an isometric isomorphism. In other words, $M\left(L^{1}(G)\right)=M(G)$. By \widehat{f} and $\widehat{\mu}$ respectively, we will denote the Fourier and the Fourier-Stieltjes transform of $f \in L^{1}(G)$ and $\mu \in M(G)$. Clearly, $\widehat{T_{\mu}}(\gamma)=\widehat{\mu}(\gamma), \gamma \in \widehat{G}$.

For $n \in \mathbb{N}$, by μ^{n} we denote the n-th convolution power of $\mu \in M(G)$. A measure $\mu \in M(G)$ is said to be power bounded if $\sup _{n \geq 0}\left\|\mu^{n}\right\|_{1}<\infty$. If $\mu \in M(G)$ is power bounded, then

$$
\mathcal{I}_{\mu}:=\left\{f \in L^{1}(G): \text { l.i.m. } n\left\|\mu^{n} * f\right\|_{1}=0\right\}
$$

is a closed ideal in $L^{1}(G)$. Clearly, $\mathcal{I}_{T_{\mu}}=\mathcal{I}_{\mu}$. For a power-bounded measure $\mu \in M(G)$, we have $|\widehat{\mu}(\chi)| \leq 1$ for all $\chi \in \widehat{G}$. If

$$
\mathcal{E}_{\mu}:=\{\chi \in \widehat{G}:|\widehat{\mu}(\chi)|=1\},
$$

then as $\widehat{T_{\mu}}=\widehat{\mu}$, we have $\mathcal{E}_{T_{\mu}}=\mathcal{E}_{\mu}$. By Proposition 2.1 (or [9, Theorem 2.6]), hull $\left(\mathcal{I}_{\mu}\right)=\mathcal{E}_{\mu}$.
Recall that the measure $\mu \in M(G)$ has independent powers if $\mu^{n} \perp \mu^{m}$, whenever $0 \leq m<n<\infty$. Recall also that a measure $\mu \in M(G)$ is said to be Hermitian if $\mu(-\Delta):=\overline{\mu(\Delta)}$ for each Borel subset Δ of G. It was proved in [5, Theorem 6.8.1] that if $\mu \in M(G)$ is a Hermitian probability measure with independent powers, then $\sigma_{M(G)}(\mu)=\bar{D}$. As

$$
\sigma\left(T_{\mu}\right)=\sigma_{M\left(L^{1}(G)\right)}\left(T_{\mu}\right)=\sigma_{M(G)}(\mu)=\bar{D}
$$

we have that $\Gamma \subseteq \sigma\left(T_{\mu}\right)$. On the other hand, since $\widehat{\mu}$ is real-valued, $\widehat{T_{\mu}}\left(\mathcal{E}_{T_{\mu}}\right)=\widehat{\mu}\left(\mathcal{E}_{\mu}\right) \subseteq\{-1,1\}$.
A locally compact Hausdorff space Ω is said to be scattered if it contains no non-empty compact perfect subset. For example, scattered subsets of the complex plane are precisely countable sets. A locally compact Abelian group is scattered if and only if it is discrete. Recall [12, Lemma 4.8.3] that Ω is scattered if and only if every continuous function on Ω vanishing at $\{\infty\}$ has countable range.

The main result of this paper is the following.

Theorem 2.2. Let A be a commutative, semisimple, and regular Banach algebra and let T be a contractive multiplier of A. Suppose that \mathcal{E}_{T} is a set of synthesis for A and $\widehat{T}\left(\mathcal{E}_{T}\right)$ is countable. Then

$$
\lim _{n \rightarrow \infty}\left\|T^{n} a\right\|=\operatorname{dist}\left(a, I_{\mathcal{E}_{T}}\right), \quad \forall a \in A
$$

where $I_{\mathcal{E}_{T}}=\left\{a \in A: \widehat{a}(\gamma)=0, \forall \gamma \in \mathcal{E}_{T}\right\}$. In particular, if \mathcal{E}_{T} is a singleton, say $\mathcal{E}_{T}=\{\gamma\}$ and $\{\gamma\}$ is a set of synthesis for A, then

$$
\lim _{n \rightarrow \infty}\left\|T^{n} a\right\|=|\widehat{a}(\gamma)|, \forall a \in A
$$

For the proof of Theorem 2.2, we need some preliminary results.
Recall that the Wiener algebra \mathcal{A} is the space of all continuous functions f on Γ such that

$$
\|f\|_{1}:=\sum_{n \in \mathbb{Z}}|\widehat{f}(n)|<\infty,
$$

where $\widehat{f}(n)$ is the n-th Fourier coefficient of f. We denote by \mathcal{A}_{+}the Banach algebra of all functions $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n}$ analytic on D and satisfying

$$
\|f\|_{1}:=\sum_{n=0}^{\infty}|\widehat{f}(n)|<\infty .
$$

The algebra \mathcal{A}_{+}can be considered as a subalgebra of \mathcal{A}. If $T \in M(A)$ is power bounded, then for arbitrary $f \in \mathcal{A}_{+}$, we can define $f(T) \in M(A)$, by

$$
f(T)=\sum_{n=0}^{\infty} \widehat{f}(n) T^{n}
$$

Then, the mapping $f \mapsto f(T)$ is a homomorphism and $\|f(T)\| \leq C_{T}\|f\|_{1}$. We say that T is a C_{1}-multiplier if $\mathcal{I}_{T}=\{0\}$. It follows from Proposition 2.1 (or [9, Theorem 2.6]) that if T is a C_{1}-multiplier on a regular semisimple Banach algebra A, then $\widehat{\widehat{T}\left(\Sigma_{A}\right)} \subseteq \sigma(T) \cap \Gamma$.

Lemma 2.3. Let A be a commutative, semisimple, and regular Banach algebra and let T be a contractive C_{1}-multiplier on A. If $\widehat{T}\left(\Sigma_{A}\right)$ is countable, then T is a surjective isometry.

Proof. Let $K:=\widehat{\widehat{T}\left(\Sigma_{A}\right)}$ and let

$$
I_{K}:=\{f \in \mathcal{A}: f(K)=\{0\}\} ; I_{K}^{+}:=\left\{f \in \mathcal{A}_{+}: f(K)=\{0\}\right\} .
$$

We know [8, Ch. XI, Section 7] that if K is an arbitrary compact countable subset of Γ, then the map $\alpha: \mathcal{A}_{+} / I_{K}^{+} \rightarrow \mathcal{A} / I_{K}$, defined by

$$
\alpha\left(f+I_{K}^{+}\right)=f+I_{K}, f \in \mathcal{A}_{+},
$$

is an isometric isomorphism. In other words, for every $f \in \mathcal{A}$, there exists an $f_{+} \in \mathcal{A}_{+}$such that $f=f_{+}$on K and

$$
\left\|f_{+}+I_{K}^{+}\right\|_{1}=\left\|f+I_{K}\right\|_{1} .
$$

Define a mapping $\beta: \mathcal{A} / I_{K} \rightarrow M(A)$, by

$$
\beta\left(f+I_{K}\right)=f_{+}(T), f \in \mathcal{A}
$$

From the identity

$$
\widehat{f_{+}(T)}(\gamma)=f_{+}(\widehat{T}(\gamma))=f(\widehat{T}(\gamma)), \forall \gamma \in \Sigma_{A},
$$

we can see that if $f \in \mathcal{A}$ vanishes on K, then $\widehat{f_{+}(T)}$ vanishes on Σ_{A} and therefore, $f_{+}(T)=0$. It follows that if $g \in \mathcal{A}_{+}$is another function for which $g(\xi)=f(\xi)$ for all $\xi \in K$, then $g_{+}(T)=f_{+}(T)$. Consequently, β is an algebra-homomorphism. Further, if $f_{+}^{0} \in I_{K}^{+}$, then as $f_{+}^{0}(T)=0$, we can write

$$
\left\|f_{+}(T)\right\|=\left\|f_{+}(T)+f_{+}^{0}(T)\right\| \leq\left\|f_{+}+f_{+}^{0}\right\|_{1},
$$

which implies

$$
\left\|f_{+}(T)\right\| \leq\left\|f_{+}+I_{K}^{+}\right\|_{1}=\left\|f+I_{K}\right\|_{1}
$$

Hence β is a contractive homomorphism. If $S:=\beta\left(\mathrm{e}^{-\mathrm{it}}+I_{K}\right)$, then as $T=\beta\left(\mathrm{e}^{\mathrm{it}}+I_{K}\right)$ and $I=\beta\left(1+I_{K}\right)$, we have $T S=I$ and $\|S\| \leq 1$. This shows that T is a surjective isometry.

Let T be a contraction on a Banach space X and let T / E_{T} be the quotient operator induced by T on the quotient space X / E_{T};

$$
T / E_{T}: x+E_{T} \mapsto T x+E_{T}, x \in X .
$$

Lemma 2.4. If T is a contraction on a Banach space X, then

$$
\lim _{n \rightarrow \infty}\left\|\left(T / E_{T}\right)^{n}\left(x+E_{T}\right)\right\|=\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|, \forall x \in X
$$

Proof. Let $x \in X$ and

$$
d(x):=\lim _{n \rightarrow \infty}\left\|\left(T / E_{T}\right)^{n}\left(x+E_{T}\right)\right\|=\lim _{n \rightarrow \infty}\left\|T^{n} x+E_{T}\right\|
$$

Clearly, $d(x) \leq \lim _{n \rightarrow \infty}\left\|T^{n} x\right\|$. On the other hand, since

$$
d(x)=\inf _{n \geq 0}\left\|T^{n} x+E_{T}\right\|
$$

for any $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ and $y \in E_{T}$ such that

$$
\left\|T^{n_{0}} x-y\right\| \leq d(x)+\varepsilon
$$

It follows that

$$
\left\|T^{n+n_{0}} x\right\| \leq\left\|T^{n+n_{0}} x-T^{n} y\right\|+\left\|T^{n} y\right\| \leq d(x)+\varepsilon+\left\|T^{n} y\right\|
$$

As $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty}\left\|T^{n} x\right\| \leq d(x)+\varepsilon
$$

so that $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\| \leq d(x)$.
Now, we are in a position to prove Theorem 2.2.
Proof of Theorem 2.2. By Proposition 2.1 (or [9, Theorem 2.6]), hull $\left(\mathcal{I}_{T}\right)=\mathcal{E}_{T}$. Since \mathcal{E}_{T} is a set of synthesis for A, we have $\mathcal{I}_{T}=I_{\mathcal{E}_{T}}$. Therefore, A / \mathcal{I}_{T} is a regular semisimple Banach algebra whose Gelfand space is \mathcal{E}_{T}. Notice also that $\widehat{T / \mathcal{I}_{T}}\left(\mathcal{E}_{T}\right)=\widehat{T}\left(\mathcal{E}_{T}\right)$. Since the set $\widehat{\widehat{T / \mathcal{I}_{T}}\left(\mathcal{E}_{T}\right)}$ is countable, by Lemma 2.3 , the operator T / \mathcal{I}_{T} is a surjective isometry on A / \mathcal{I}_{T}. Consequently, by Lemma 2.4 we can write

$$
\lim _{n \rightarrow \infty}\left\|T^{n} a\right\|=\left\|a+\mathcal{I}_{T}\right\|=\operatorname{dist}\left(a, I_{\mathcal{E}_{T}}\right), \forall a \in A
$$

If $\mathcal{E}_{T}=\{\gamma\}$ and $\{\gamma\}$ is a set of synthesis for A, then as $\operatorname{dist}\left(a, I_{\mathcal{E}_{T}}\right)=|\widehat{a}(\gamma)|$, we have

$$
\lim _{n \rightarrow \infty}\left\|T^{n} a\right\|=|\widehat{a}(\gamma)|, \forall a \in A
$$

The proof is complete.
Next, we present several corollaries of Theorem 2.2.
Let G be a locally compact Abelian group and let $\mu \in M(G)$ be a power-bounded measure. The classical Foguel theorem [2] states that $\lim _{n \rightarrow \infty}\left\|\mu^{n} * f\right\|_{1}=0$ for all $f \in L^{1}(G)$ such that $\widehat{f}(0)=0$ if and only if $\mathcal{E}_{\mu}=\{0\}$. In [6, Theorem 2], Granirer has proved that if $f \in L^{1}(G)$, then $\lim _{n \rightarrow \infty}\left\|\mu^{n} * f\right\|_{1}=0$ if and only if \widehat{f} vanishes on \mathcal{E}_{μ}.

Recall that the coset ring of a locally compact group G (not necessarily Abelian), denoted by $\mathcal{R}(G)$, is the smallest Boolean algebra of subsets of G containing left cosets of all subgroups of G. As in [3], define the closed coset ring $\mathcal{R}_{c}(G)$ of G, by

$$
\mathcal{R}_{c}(G)=\left\{E \in \mathcal{R}\left(G_{d}\right): E \text { is closed in } G\right\}
$$

where G_{d} is the algebraic group G with the discrete topology. As proved in [13, Lemma 6.1], if $\mu \in M(G)$ is power bounded, where G is Abelian, then $\mathcal{E}_{\mu} \in \mathcal{R}_{c}(\widehat{G})$. On the other hand, each subset of $\mathcal{R}_{c}(\widehat{G})$ is a set of synthesis for $L^{1}(G)$ [4, Theorem 3.9]. Consequently, \mathcal{E}_{μ} is a set of synthesis for $L^{1}(G)$.

Corollary 2.5. Let G be a locally compact Abelian group and let $\mu \in M(G)$ such that $\|\mu\|_{1} \leq 1$. If $\overline{\widehat{\mu}\left(\mathcal{E}_{\mu}\right)}$ is countable (in particular, if \mathcal{E}_{μ} is compact and scattered), then

$$
\lim _{n \rightarrow \infty}\left\|\mu^{n} * f\right\|_{1}=\operatorname{dist}\left(f, I_{\mathcal{E}_{\mu}}\right), \forall f \in L^{1}(G)
$$

where $I_{\mathcal{E}_{\mu}}=\left\{f \in L^{1}(G): \widehat{f}(\chi)=0, \forall \chi \in \mathcal{E}_{\mu}\right\}$. In particular, if $\mathcal{E}_{\mu}=\{\chi\}$, then

$$
\lim _{n \rightarrow \infty}\left\|\mu^{n} * f\right\|_{1}=|\widehat{f}(\chi)|, \forall f \in L^{1}(G)
$$

If G is a compact Abelian group, then $L^{p}(G)(1 \leq p<\infty)$ with the convolution as multiplication and the usual norm is a commutative, semisimple, and regular Banach algebra. The Gelfand space of $L^{p}(G)$ is \widehat{G} and the Gelfand transform of $f \in L^{p}(G)$ is just the Fourier transform of f. As \widehat{G} is discrete, every subset of \widehat{G} is a set of synthesis for $L^{p}(G)$. Further, for every $\mu \in M(G)$, the convolution operator $T_{\mu}: L^{p}(G) \rightarrow L^{p}(G)$, defined by $T_{\mu} f=\mu * f, f \in L^{p}(G)$, is a multiplier of $L^{p}(G)$ and $\left\|T_{\mu}\right\|_{p} \leq\|\mu\|_{1}$. Moreover, we have $\widehat{T_{\mu}}=\widehat{\mu}$ and therefore, $\mathcal{E}_{T_{\mu}}=\mathcal{E}_{\mu}$.

Corollary 2.6. Let G be a compact Abelian group and let $\mu \in M(G)$ such that $\|\mu\|_{1} \leq 1$. If $\overline{\hat{\mu}\left(\mathcal{E}_{\mu}\right)}$ is countable (in particular, if \mathcal{E}_{μ} is finite), then

$$
\lim _{n \rightarrow \infty}\left\|\mu^{n} * f\right\|_{p}=\operatorname{dist}\left(f, I_{\mathcal{E}_{\mu}}\right), \forall f \in L^{p}(G)(1<p<\infty)
$$

where $I_{\mathcal{E}_{\mu}}=\left\{f \in L^{p}(G): \widehat{f}(\chi)=0, \forall \chi \in \mathcal{E}_{\mu}\right\}$. In particular, if $\mathcal{E}_{\mu}=\{\chi\}$, then

$$
\lim _{n \rightarrow \infty}\left\|\mu^{n} * f\right\|_{p}=|\widehat{f}(\chi)|, \forall f \in L^{p}(G)
$$

Let G be a locally compact (not necessarily Abelian) group. By $A(G)$ and $B(G)$ respectively, we denote the Fourier and the Fourier-Stieltjes algebra of G. With pointwise multiplication $A(G)$ is a commutative, semisimple, and regular Banach algebra whose Gelfand space is G (via Dirac measures) [7]. For each $u \in B(G)$, the operator $L_{u}: A(G) \rightarrow A(G)$, defined by $L_{u} v=u v, v \in A(G)$, is a multiplier of $A(G)$. If G is amenable, then every multiplier of $A(G)$ is of this form and the map $u \mapsto L_{u}$ is isometric [1]. For a power-bounded element u of $B(G)$, we put

$$
\mathcal{E}_{u}:=\{g \in G:|u(g)|=1\} .
$$

As proved in [9, Theorem 4.1], $\mathcal{E}_{u} \in \mathcal{R}_{c}(G)$. On the other hand, if G is amenable, then every subset of $\mathcal{R}_{c}(G)$ is a set of synthesis for $A(G)$ [3, Lemma 2.2]. Therefore, in the case when G is amenable, \mathcal{E}_{u} is a set of synthesis for $A(G)$.

Corollary 2.7. Let G be a locally compact amenable group and let $u \in B(G)$ such that $\|u\|_{B(G)} \leq 1$. If $\overline{u\left(\mathcal{E}_{u}\right)}$ is countable (in particular, if \mathcal{E}_{u} is compact and scattered), then

$$
\lim _{n \rightarrow \infty}\left\|u^{n} v\right\|_{A(G)}=\operatorname{dist}\left(v, I_{\mathcal{E}_{u}}\right), \forall v \in A(G)
$$

where $I_{\mathcal{E}_{u}}=\left\{v \in A(G): v(g)=0, \forall g \in \mathcal{E}_{u}\right\}$. In particular, if $\mathcal{E}_{u}=\{g\}$, then

$$
\lim _{n \rightarrow \infty}\left\|u^{n} v\right\|_{A(G)}=|v(g)|, \forall v \in A(G) .
$$

Acknowledgements

The author is grateful to the referee for his many helpful remarks and suggestions.

References

[1] A. Derighetti, Some results on the Fourier-Stieltjes algebra of a locally compact group, Comment. Math. Helv. 45 (1970) 219-228.
[2] S.R. Foguel, On iterates of convolutions, Proc. Amer. Math. Soc. 47 (1975) 368-370.
[3] B. Forrest, E. Kaniuth, A.T. Lau, N. Spronk, Ideals with bounded approximate identities in Fourier algebras, J. Funct. Anal. 203 (2003) $286-304$.
[4] J.E. Gilbert, On projections of $L^{\infty}(G)$ onto translation-invariant subspaces, Proc. Lond. Math. Soc. 19 (1969) 69-88.
[5] C.C. Graham, O.C. McGehee, Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1979.
[6] E.E. Granirer, On some properties of the Banach algebras $A_{p}(G)$ for locally compact groups, Proc. Amer. Math. Soc. 95 (1985) 375-381.
[7] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973) 91-123.
[8] J.P. Kahane, Series de Fourier Absolument Convergentes, Mir, Moscow, 1976 (in Russian).
[9] E. Kaniuth, A. Lau, A. Ülger, Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras, J. Lond. Math. Soc. 81 (2010) 255-275.
[10] R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, New York, 1971.
[11] R. Larsen, Banach Algebras, Marcel Dekker, New York, 1973.
[12] K.B. Laursen, M.M. Neumann, An Introduction to the Local Spectral Theory, Clarendon Press, Oxford, 2000.
[13] B.M. Schreiber, Measures with bounded convolution powers, Trans. Amer. Math. Soc. 151 (1970) 405-431.
[14] J. Van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Oper. Theory, Adv. Appl., vol. 88, Birkhäuser, Basel, Boston, Berlin, 1996.

[^0]: E-mail address: hsmustafayev@yahoo.com.
 http://dx.doi.org/10.1016/j.crma.2016.04.002
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

