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Let G be a locally compact amenable group, A (G) and B (G) be the Fourier and the 
Fourier–Stieltjes algebra of G , respectively. For a given u ∈ B (G), let Eu := {g ∈ G : |u (g)| =
1}. The main result of this paper particularly states that if ‖u‖B(G) ≤ 1 and u (Eu) is 
countable (in particular, if Eu is compact and scattered), then

lim
n→∞

∥∥un v
∥∥

A(G)
= dist

(
v, IEu

)
, ∀v ∈ A (G) ,

where IEu = {v ∈ A (G) : v (g) = 0, ∀g ∈ Eu}.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit G un groupe compact moyennable et soient A (G) et B (G) l’algèbre de Fourier et 
l’algèbre de Fourier–Stieltjes de G , respectivement. Pour un u ∈ B (G) donné, posons Eu :=
{g ∈ G : |u (g)| = 1}. Le résultat principal de cet article établit que, si ‖u‖B(G) ≤ 1 et si u (Eu)

est dénombrable (en particulier si Eu est compacte et éparpillé), alors

lim
n→∞

∥∥un v
∥∥

A(G)
= dist

(
v, IEu

)
, ∀v ∈ A (G) ,

où IEu = {v ∈ A (G) : v (g) = 0, ∀g ∈ Eu}.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a complex Banach space and let B (X) be the algebra of all bounded linear operators on X . As usual, by σ (T )

we denote the spectrum of T ∈ B (X). Throughout this paper, we always assume that A is a complex, commutative, and 
semisimple Banach algebra. By �A we will denote the Gelfand space of A equipped with the w∗-topology and by ̂a, where 
â (γ ) = γ (a), γ ∈ �A , the Gelfand transform of a ∈ A. A linear mapping T : A → A is called a multiplier of A if (T a)b = aT (b)

holds for all a, b ∈ A. The set M (A) of all multipliers of A is a commutative, unital, closed, and full subalgebra of B (A). The 
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Gelfand space of M (A) may be represented as the disjoint union of �A and hull (A), where �A is canonically embedded in 
�M(A) and hull (A) denotes the hull of A in �M(A) .

For each T ∈ M (A), there is a uniquely determined bounded continuous function T̂
(∥∥T̂

∥∥∞ ≤ ‖T ‖) on �A such that

(̂T a) (γ ) = T̂ (γ ) â (γ ) , ∀a ∈ A, γ ∈ �A .

In fact, T̂ is the restriction to �A of the Gelfand transform of T on �M(A) . The function T̂ is often called the Helgason–Wang
representation of T [10,12]. It follows from the preceding formula that if T̂ (γ ) = 0 for all γ ∈ �A , then T = 0. If T ∈ M (A), 
by Gelfand theory,

σ (T ) = σM(A) (T ) = {
T̂ (φ) : φ ∈ �M(A)

}
.

Since �A is a subset of �M(A) , we have T̂ (�A) ⊆ σ (T ) for all T ∈ M (A).

2. Distance formulas

Recall that an operator T on a Banach space that satisfies

CT := sup
n≥0

∥∥T n
∥∥ < ∞

is called power bounded (if T is power bounded, then by passing to an equivalent norm T can be made contractive). If 
T ∈ B (X) is power bounded, then

ET := {
x ∈ X : l.i.m.n

∥∥T nx
∥∥ = 0

}
is a closed T -invariant subspace, where l.i.m. is a fixed Banach limit (it can be seen that l.i.m.n

∥∥T nx
∥∥ = 0 implies 

limn→∞
∥∥T nx

∥∥ = 0). If x0 ∈ ET , then from the relations

∥∥T nx
∥∥ ≤ ∥∥T nx − T nx0

∥∥ + ∥∥T nx0
∥∥ ≤ CT ‖x − x0‖ + ∥∥T nx0

∥∥ ,

we have

l.i.m.n
∥∥T nx

∥∥ ≤ CT dist (x, ET ) . (2.1)

We have written D := {z ∈ C : |z| < 1} and � := {z ∈ C : |z| = 1}. If T ∈ B (X) is power bounded, then clearly, σ (T ) ⊆ D . 
A discrete version of [14, Theorem 5.5.10] states that if T ∈ B (X) is a contraction and the unitary spectrum σ (T ) ∩ � of T
is countable, then

lim
n→∞

∥∥T nx
∥∥ = dist (x, ET ) , ∀x ∈ X .

Now, let A be a commutative semisimple Banach algebra and let T be a power-bounded multiplier of A. Then

IT := {
a ∈ A : l.i.m.n

∥∥T na
∥∥ = 0

}
is a closed ideal in A. Notice that 

∣∣T̂ (γ )
∣∣ ≤ 1 for all γ ∈ �A . We put

ET := {
γ ∈ �A : ∣∣T̂ (γ )

∣∣ = 1
}
.

Recall that a commutative Banach algebra A is said to be regular if, given a closed subset S of �A and γ ∈ �A�S , 
there exists an a ∈ A such that â (S) = {0} and â (γ ) �= 0. Let A be a regular semisimple Banach algebra and A00 :=
{a ∈ A : supp â is compact}. For a closed subset S of �A , there are two distinguished closed ideals in A with hull equal 
to S , namely

I S := {
a ∈ A : â (γ ) = 0, ∀γ ∈ S

}
is the largest closed ideal whose hull is S and J S := J 0

S is the smallest closed ideal whose hull is S , where

J 0
S := {a ∈ A00 : supp â ∩ S = ∅} .

The set S is said to be a set of synthesis for A if I S = J S [11, Section 8.3].

Proposition 2.1. Let A be a commutative, semisimple, and regular Banach algebra and let T be a power-bounded multiplier of A. Then 
hull (IT ) = ET .
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Proof. If γ ∈ ET and a ∈ IT , then as
∥∥T na

∥∥ ≥ ∣∣T̂ (γ )
∣∣n ∣∣̂a (γ )

∣∣ = ∣∣̂a (γ )
∣∣ , ∀n ∈N,

we have 
∣∣̂a (γ )

∣∣ ≤ l.i.m.n
∥∥T na

∥∥ = 0. This shows that ET ⊆ hull (IT ). For the opposite inclusion, assume that 
∣∣T̂ (γ0)

∣∣ < 1 for 
some γ0 ∈ �A . Then there is a compact neighborhood U of γ0 such that 

∣∣T̂ (γ )
∣∣ < 1 for all γ ∈ U . Let K be a compact 

subset of �A such that γ0 ∈ K ⊂ U . Then there exists an a ∈ A such that ̂a (K ) = {1} and ̂a
(
�A�U

) = {0}. As supp â ⊆ U , 
we have 

∣∣T̂ (γ )
∣∣ < 1 for all γ ∈ supp â. Since supp â is compact, using the formula

lim
n→∞

∥∥T na
∥∥ 1

n = max
{∣∣T̂ (γ )

∣∣ : γ ∈ supp â
}

[12, Proposition 4.7.8], we have limn→∞
∥∥T na

∥∥ = 0 and therefore, a ∈ IT . As ̂a (γ0) = 1, we obtain that γ0 /∈ hull (IT ). �
The same result was obtained in [9, Theorem 2.6]. Our proof is shorter and different.
If T ∈ M (A), then clearly,

T̂ (ET ) ⊆ σ (T ) ∩ �.

We now give an example of a multiplier T ∈ M (A) such that � ⊆ σ (T ), but T̂ (ET ) is finite.
Let G be a locally compact Abelian group with dual group Ĝ . As usual, by L1 (G) and M (G) respectively, we denote 

the group algebra and the convolution measure algebra of G . For every μ ∈ M (G), the convolution operator Tμ : L1 (G) →
L1 (G), defined by Tμ f = μ ∗ f , f ∈ L1 (G), is a multiplier of L1 (G). By Wendel–Helson’s theorem [10, Theorem 0.1.1], 
every multiplier of L1 (G) is obtained in this way and the map μ �→ Tμ is an isometric isomorphism. In other words, 
M

(
L1 (G)

) = M (G). By f̂ and μ̂ respectively, we will denote the Fourier and the Fourier–Stieltjes transform of f ∈ L1 (G)

and μ ∈ M (G). Clearly, T̂μ (γ ) = μ̂ (γ ), γ ∈ Ĝ .
For n ∈N, by μn we denote the n-th convolution power of μ ∈ M (G). A measure μ ∈ M (G) is said to be power bounded

if supn≥0

∥∥μn
∥∥

1 < ∞. If μ ∈ M (G) is power bounded, then

Iμ :=
{

f ∈ L1 (G) : l.i.m.n
∥∥μn ∗ f

∥∥
1 = 0

}

is a closed ideal in L1 (G). Clearly, ITμ = Iμ . For a power-bounded measure μ ∈ M (G), we have |μ̂ (χ)| ≤ 1 for all χ ∈ Ĝ . 
If

Eμ := {
χ ∈ Ĝ : |μ̂ (χ)| = 1

}
,

then as T̂μ = μ̂, we have ETμ = Eμ . By Proposition 2.1 (or [9, Theorem 2.6]), hull
(
Iμ

) = Eμ .
Recall that the measure μ ∈ M (G) has independent powers if μn⊥μm , whenever 0 ≤ m < n < ∞. Recall also that a mea-

sure μ ∈ M (G) is said to be Hermitian if μ (−�) := μ(�) for each Borel subset � of G . It was proved in [5, Theorem 6.8.1]
that if μ ∈ M (G) is a Hermitian probability measure with independent powers, then σM(G) (μ) = D . As

σ
(
Tμ

) = σM
(
L1(G)

) (
Tμ

) = σM(G) (μ) = D,

we have that � ⊆ σ
(
Tμ

)
. On the other hand, since μ̂ is real-valued, T̂μ

(
ETμ

) = μ̂
(
Eμ

) ⊆ {−1,1}.
A locally compact Hausdorff space 	 is said to be scattered if it contains no non-empty compact perfect subset. For 

example, scattered subsets of the complex plane are precisely countable sets. A locally compact Abelian group is scattered 
if and only if it is discrete. Recall [12, Lemma 4.8.3] that 	 is scattered if and only if every continuous function on 	
vanishing at {∞} has countable range.

The main result of this paper is the following.

Theorem 2.2. Let A be a commutative, semisimple, and regular Banach algebra and let T be a contractive multiplier of A. Suppose 
that ET is a set of synthesis for A and ̂T (ET ) is countable. Then

lim
n→∞

∥∥T na
∥∥ = dist

(
a, IET

)
, ∀a ∈ A,

where IET = {
a ∈ A : â (γ ) = 0, ∀γ ∈ ET

}
. In particular, if ET is a singleton, say ET = {

γ
}

and 
{
γ

}
is a set of synthesis for A, then

lim
n→∞

∥∥T na
∥∥ = ∣∣̂a (γ )

∣∣ , ∀a ∈ A.

For the proof of Theorem 2.2, we need some preliminary results.
Recall that the Wiener algebra A is the space of all continuous functions f on � such that
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‖ f ‖1 :=
∑
n∈Z

∣∣ f̂ (n)
∣∣ < ∞,

where f̂ (n) is the n-th Fourier coefficient of f . We denote by A+ the Banach algebra of all functions f (z) = ∑∞
n=0 f̂ (n) zn

analytic on D and satisfying

‖ f ‖1 :=
∞∑

n=0

∣∣ f̂ (n)
∣∣ < ∞.

The algebra A+ can be considered as a subalgebra of A. If T ∈ M (A) is power bounded, then for arbitrary f ∈ A+ , we can 
define f (T ) ∈ M (A), by

f (T ) =
∞∑

n=0

f̂ (n) T n.

Then, the mapping f �→ f (T ) is a homomorphism and ‖ f (T )‖ ≤ CT ‖ f ‖1. We say that T is a C1-multiplier if IT = {0}. It 
follows from Proposition 2.1 (or [9, Theorem 2.6]) that if T is a C1-multiplier on a regular semisimple Banach algebra A, 
then T̂ (�A) ⊆ σ (T ) ∩ �.

Lemma 2.3. Let A be a commutative, semisimple, and regular Banach algebra and let T be a contractive C1-multiplier on A. If ̂T (�A)

is countable, then T is a surjective isometry.

Proof. Let K := T̂ (�A) and let

I K := { f ∈ A : f (K ) = {0}} ; I+K := { f ∈ A+ : f (K ) = {0}} .

We know [8, Ch. XI, Section 7] that if K is an arbitrary compact countable subset of �, then the map α :A+�I+K →A�I K , 
defined by

α
(

f + I+K
) = f + I K , f ∈ A+,

is an isometric isomorphism. In other words, for every f ∈A, there exists an f+ ∈A+ such that f = f+ on K and∥∥ f+ + I+K
∥∥

1 = ‖ f + I K ‖1 .

Define a mapping β :A�I K → M (A), by

β ( f + I K ) = f+ (T ) , f ∈ A.

From the identity

f̂+ (T ) (γ ) = f+
(
T̂ (γ )

) = f
(
T̂ (γ )

)
, ∀γ ∈ �A,

we can see that if f ∈ A vanishes on K , then f̂+ (T ) vanishes on �A and therefore, f+ (T ) = 0. It follows that if g ∈ A+ is 
another function for which g (ξ) = f (ξ) for all ξ ∈ K , then g+ (T ) = f+ (T ). Consequently, β is an algebra-homomorphism. 
Further, if f 0+ ∈ I+K , then as f 0+ (T ) = 0, we can write

‖ f+ (T )‖ =
∥∥∥ f+ (T ) + f 0+ (T )

∥∥∥ ≤
∥∥∥ f+ + f 0+

∥∥∥
1
,

which implies

‖ f+ (T )‖ ≤ ∥∥ f+ + I+K
∥∥

1 = ‖ f + I K ‖1 .

Hence β is a contractive homomorphism. If S := β
(
e−it + I K

)
, then as T = β

(
eit + I K

)
and I = β (1 + I K ), we have T S = I

and ‖S‖ ≤ 1. This shows that T is a surjective isometry. �
Let T be a contraction on a Banach space X and let T�E T be the quotient operator induced by T on the quotient space 

X�ET ;

T�ET : x + ET �→ T x + ET , x ∈ X .

Lemma 2.4. If T is a contraction on a Banach space X, then

lim
n→∞

∥∥(T�ET )n (x + ET )
∥∥ = lim

n→∞
∥∥T nx

∥∥ , ∀x ∈ X .
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Proof. Let x ∈ X and

d (x) := lim
n→∞

∥∥(T�ET )n (x + ET )
∥∥ = lim

n→∞
∥∥T nx + ET

∥∥ .

Clearly, d (x) ≤ limn→∞
∥∥T nx

∥∥. On the other hand, since

d (x) = inf
n≥0

∥∥T nx + ET
∥∥ ,

for any ε > 0, there exists n0 ∈ N and y ∈ ET such that∥∥T n0 x − y
∥∥ ≤ d (x) + ε.

It follows that∥∥T n+n0 x
∥∥ ≤ ∥∥T n+n0 x − T n y

∥∥ + ∥∥T n y
∥∥ ≤ d (x) + ε + ∥∥T n y

∥∥ .

As n → ∞, we have

lim
n→∞

∥∥T nx
∥∥ ≤ d (x) + ε,

so that limn→∞
∥∥T nx

∥∥ ≤ d (x). �
Now, we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. By Proposition 2.1 (or [9, Theorem 2.6]), hull (IT ) = ET . Since ET is a set of synthesis for A, we 
have IT = IET . Therefore, A�IT is a regular semisimple Banach algebra whose Gelfand space is ET . Notice also that 

T̂�IT (ET ) = T̂ (ET ). Since the set T̂�IT (ET ) is countable, by Lemma 2.3, the operator T�IT is a surjective isometry 
on A�IT . Consequently, by Lemma 2.4 we can write

lim
n→∞

∥∥T na
∥∥ = ‖a + IT ‖ = dist

(
a, IET

)
, ∀a ∈ A.

If ET = {
γ

}
and 

{
γ

}
is a set of synthesis for A, then as dist

(
a, IET

) = ∣∣̂a (γ )
∣∣, we have

lim
n→∞

∥∥T na
∥∥ = ∣∣̂a (γ )

∣∣ , ∀a ∈ A.

The proof is complete. �
Next, we present several corollaries of Theorem 2.2.
Let G be a locally compact Abelian group and let μ ∈ M (G) be a power-bounded measure. The classical Foguel theorem 

[2] states that limn→∞
∥∥μn ∗ f

∥∥
1 = 0 for all f ∈ L1 (G) such that ̂ f (0) = 0 if and only if Eμ = {0}. In [6, Theorem 2], Granirer 

has proved that if f ∈ L1 (G), then limn→∞
∥∥μn ∗ f

∥∥
1 = 0 if and only if f̂ vanishes on Eμ .

Recall that the coset ring of a locally compact group G (not necessarily Abelian), denoted by R (G), is the smallest Boolean 
algebra of subsets of G containing left cosets of all subgroups of G . As in [3], define the closed coset ring Rc (G) of G , by

Rc (G) = {E ∈ R (Gd) : E is closed in G} ,

where Gd is the algebraic group G with the discrete topology. As proved in [13, Lemma 6.1], if μ ∈ M (G) is power bounded, 
where G is Abelian, then Eμ ∈ Rc

(
Ĝ
)
. On the other hand, each subset of Rc

(
Ĝ
)

is a set of synthesis for L1 (G) [4, Theo-
rem 3.9]. Consequently, Eμ is a set of synthesis for L1 (G).

Corollary 2.5. Let G be a locally compact Abelian group and let μ ∈ M (G) such that ‖μ‖1 ≤ 1. If μ̂
(
Eμ

)
is countable (in particular, 

if Eμ is compact and scattered), then

lim
n→∞

∥∥μn ∗ f
∥∥

1 = dist
(

f , IEμ

)
, ∀ f ∈ L1 (G) ,

where IEμ = {
f ∈ L1 (G) : f̂ (χ) = 0, ∀χ ∈ Eμ

}
. In particular, if Eμ = {χ}, then

lim
n→∞

∥∥μn ∗ f
∥∥

1 = ∣∣ f̂ (χ)
∣∣ , ∀ f ∈ L1 (G) .

If G is a compact Abelian group, then Lp (G) (1 ≤ p < ∞) with the convolution as multiplication and the usual norm 
is a commutative, semisimple, and regular Banach algebra. The Gelfand space of L p (G) is Ĝ and the Gelfand transform of 
f ∈ Lp (G) is just the Fourier transform of f . As Ĝ is discrete, every subset of Ĝ is a set of synthesis for Lp (G). Further, 
for every μ ∈ M (G), the convolution operator Tμ : Lp (G) → Lp (G), defined by Tμ f = μ ∗ f , f ∈ Lp (G), is a multiplier of 
Lp (G) and 

∥∥Tμ

∥∥ ≤ ‖μ‖1. Moreover, we have T̂μ = μ̂ and therefore, ETμ = Eμ .
p
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Corollary 2.6. Let G be a compact Abelian group and let μ ∈ M (G) such that ‖μ‖1 ≤ 1. If μ̂
(
Eμ

)
is countable (in particular, if Eμ is 

finite), then

lim
n→∞

∥∥μn ∗ f
∥∥

p = dist
(

f , IEμ

)
, ∀ f ∈ Lp (G) (1 < p < ∞) ,

where IEμ = {
f ∈ Lp (G) : f̂ (χ) = 0, ∀χ ∈ Eμ

}
. In particular, if Eμ = {χ}, then

lim
n→∞

∥∥μn ∗ f
∥∥

p = ∣∣ f̂ (χ)
∣∣ , ∀ f ∈ Lp (G) .

Let G be a locally compact (not necessarily Abelian) group. By A (G) and B (G) respectively, we denote the Fourier and 
the Fourier–Stieltjes algebra of G . With pointwise multiplication A (G) is a commutative, semisimple, and regular Banach 
algebra whose Gelfand space is G (via Dirac measures) [7]. For each u ∈ B (G), the operator Lu : A (G) → A (G), defined by 
Lu v = uv , v ∈ A (G), is a multiplier of A (G). If G is amenable, then every multiplier of A (G) is of this form and the map 
u �→ Lu is isometric [1]. For a power-bounded element u of B (G), we put

Eu := {g ∈ G : |u (g)| = 1} .

As proved in [9, Theorem 4.1], Eu ∈ Rc (G). On the other hand, if G is amenable, then every subset of Rc (G) is a set of 
synthesis for A (G) [3, Lemma 2.2]. Therefore, in the case when G is amenable, Eu is a set of synthesis for A (G).

Corollary 2.7. Let G be a locally compact amenable group and let u ∈ B (G) such that ‖u‖B(G) ≤ 1. If u (Eu) is countable (in particular, 
if Eu is compact and scattered), then

lim
n→∞

∥∥un v
∥∥

A(G)
= dist

(
v, IEu

)
, ∀v ∈ A (G) ,

where IEu = {v ∈ A (G) : v (g) = 0, ∀g ∈ Eu}. In particular, if Eu = {g}, then

lim
n→∞

∥∥un v
∥∥

A(G)
= |v (g)| , ∀v ∈ A (G) .
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