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Inspired by a description of the logarithmic space of Kato and Nakayama in terms of 
real oriented blowups, we describe Milnor fibrations and related constructions used by 
A’Campo in the language of logarithmic geometry.
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r é s u m é

Inspiré par une description de l’espace logarithmitique de Kato et Nakayama à l’aide des 
éclatements réels orientés, nous décrivons la fibration de Milnor et des constructions 
utilisées par A’Campo en termes de géométrie logarithmique.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We fix f ∈ C[x1, . . . , xd+1] and we denote its zero locus by V ( f ). The singularity of f in a point x ∈ V ( f ) can be studied 
in many ways. A classical approach is to consider the map

f : X → D : x �→ f (x),

where X = B(x, ε) ∩ f −1(D), B(x, ε) is the open ball centered at x with radius ε in Cd+1 and D is the open disc in C of 
radius η around 0. Above D \ {0}, this map f is a locally trivial fibration if 0 < η � ε � 1. It is called the Milnor fibration 
of f at x, and its fibre is called the Milnor fibre of f at x. Its cohomology is equipped with a canonical monodromy action, 
which is induced by the generator of the fundamental group of D \ {0}.

In order to study this fibration more closely, A’Campo used in [1] a locally trivial fibration that has the same homotopy 
type as the Milnor fibration. He starts from an embedded resolution of V ( f ) and uses the notion of real oriented blowups 
to construct several new spaces. One of these is actually a locally trivial fibration over S1 and the associated monodromy 
action can be described explicitly, which makes it easier to study the Milnor fibration.
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On the other hand, Kato and Nakayama constructed in [2] a logarithmic space X log associated with a complex analytic 
log variety. This construction can also be expressed by real oriented blowups if we are in the strict normal crossing case.

Using the language of log geometry, we construct a new continuous map fMF : XMF → S1. This XMF is a closed subspace 
of the extended logspace XextLog, which will be defined in Section 4 and is an extension of X log. The continuous map fMF is 
a locally trivial fibration and we show that the fibres of fMF are homotopic to the fibres of the Milnor fibration by relating 
this to the constructions used by A’Campo.

Finally, we apply this construction to special formal C[ [t] ]-schemes instead of f : X → D . This leads us to our main 
application and result. It states that the analytic Milnor fibre, introduced by Nicaise and Sebag in [4], determines the 
homotopy type of the Milnor fibration.

From now on, we will assume that X0 = f −1(0) has strict normal crossings, as A’Campo did in [1]. We will comment on 
what to do if this is not the case in Remark 1.

2. Preliminaries

By variety, we will mean a complex analytic variety. For every morphism of varieties f : X → Y , we will denote by 
f # : OY → f∗OX the corresponding morphism of sheaves. The underlying topological space of a variety X will also be 
denoted by X .

Given a sheaf F on X and x ∈ X , we denote by Fx the stalk of the sheaf F at x. Moreover, given a ∈ F(U ) for some 
open U and x ∈ U , we denote by ax the germ corresponding to a.

2.1. Monoids

We denote by R≥0 the set of non-negative real numbers, by N the set of non-negative integers and we set S1 = {z ∈ C |
|z| = 1}. We will consider the following monoids R = (R, +), N = (N, +), R≥0

× = (R≥0, ×), R≥0
+ = (R≥0, +) and S1 = (S1, ·). 

A monoid is called fine if it is integral and finitely generated, and it is called fs if it is fine and saturated.
We call a monoid P regular if it is isomorphic to Nn for some n. A regular monoid is automatically fs. Under the 

isomorphism Hom
(
Nn+1,R≥0

+
) ∼=

(
R≥0

+
)n+1

, the standard simplex

�n =
{

(x0, . . . , xn) ∈ (R≥0)n+1
∣∣∣∣ n∑

i=0

xi = 1

}

corresponds to 
{
ϕ ∈ Hom

(
Nn+1,R≥0

+
) ∣∣ϕ(1,1, . . . ,1) = 1

}
.

Assume P is a monoid generated by finitely many elements e1, . . . , en . Let Hom(P , S1) be endowed with the pointwise 
convergence topology. We can consider it to be a subset of 

(
S1

)n
by mapping ϕ in Hom(P , S1) to (ϕ(e1), . . . ,ϕ(en)) and 

this topology is exactly the induced topology. Hence, Hom(P , S1) is a compact topological space since it is a closed subspace 
of 

(
S1

)n
.

2.2. Log geometry

Fix a variety X . A pre-log structure on X is a morphism of sheaves of monoids α : M → OX , where we consider the 
multiplication as the operation on OX . A log structure on X is a pre-log structure α :M →OX such that α−1(O×

X ) →O×
X

is an isomorphism.
A log variety is a variety endowed with a log structure. Given log varieties X and Y , a log morphism f : X → Y consists 

of a morphism of varieties f : X → Y and a morphism of sheaves of monoids f # : MY → f∗MX such that f # ◦ αY =
f∗αX ◦ f #.

Example 1. Let Z be a closed subset of a variety X . Define the sheaf of monoids MZ on X by

MZ (V ) = { f ∈ OX (V ) | f |V \Z is invertible }
for every open V in X . We call this the log structure induced by Z .

Example 2. We will denote by T the log variety whose underlying variety is a point and whose log structure is given by

R≥0
× × S1 →C : (r, s) → rs.

We now introduce the notion of a chart. The log structure Ma induced by the pre-log structure α : M → OX is defined 
by M ⊕OX O×

X → OX . We have Ma
x = Mx ⊕OX,x O×

x for all x ∈ X . Let X be a log variety with log structure α : M → OX . 
A chart on an open U of X is a monoid morphism P → MX (U ) such that the log structure on U induced by P → OU
is the log structure M restricted to U . Here is P the constant sheaf with values in P and the morphism is obtained by 
considering P →MX (U ) α→OX (U ).
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Example 3. Let X be the affine line A1
C

with coordinate z and set Z = {0}. Then MZ is a log structure and N → MZ (X) :
n �→ zn is a chart.

Example 4. Let X be a variety and let E be a strict normal crossing divisor on X . Fix a point x in X and consider an open 
neighborhood U of x and local coordinates x1, . . . , xn at x such that E ∩ U = ∪r

i=1 V (xi). Then the morphism Nr →ME(U ) :
(n1, . . . , nr) �→ ∏r

i=1 xni
i is a chart on U for ME . This implies that ME,y is the submonoid of OX,y generated by O×

X,y and 
x1, . . . , xr for all y ∈ U .

A fs log variety is a log variety X with log structure α : M → OX such that the stalks of the sheaf M/O× are fs at all 
points of X and such that for all x ∈ X there exist a neighborhood U of x and a chart P →M(U ) such that P is fs.

3. Log spaces

We briefly review the definition of the log space X log of Kato and Nakayama from [2]. Fix a fs log variety X . Define the
logarithmic space X log to be the set

X log =
{
(x,ϕ)

∣∣∣ x ∈ X,ϕ ∈ Hom(Mx, S1) such that ϕ( f ) = f (x)

| f (x)| for all f ∈ O×
X,x

}
.

This log space X log can also be viewed as

X(T ) = Hom(T , X),

where T is the log variety introduced in Example 2. Note that it has a natural map πX : X log → X : (x, ϕ) �→ x.
Assume there exists a chart β : P →M(U ) on an open U of X such that P is fs. Then we have a natural map i : U log →

U × Hom
(

P , S1
) : (x, ϕ) �→ (x, ϕ ◦ βx) in U × Hom(P , S1), where βx : P → Mx . We endow X log with the weakest topology 

such that πX is continuous and such that i is continuous for every open U for which there exists a chart β : P → MX (U )

on U with P fs. It is sufficient to check this condition on any atlas of charts.
An element p ∈ P can be evaluated in a point x ∈ U by composing the maps βx : P → Mx and Mx → OX,x . The map i

is injective and the image is the closed subset

{(x,ϕ) ∈ U × Hom(P , S1) | p(x) = ϕ(p)|p(x)| for all p ∈ P }.
An easy consequence then is that the map πX : X log → X is proper and continuous.

Example 5. We continue Example 3. Using the chart N →MZ (X) : n �→ zn , we obtain

X log = {(z,ϕ) ∈C× Hom(N, S1) | ϕ(1)|z| = z} =R≥0 × S1,

where πX : X log → X : (r, s) �→ rs.

Example 6. Consider the affine n-dimensional space X = An
C

with coordinates z1, . . . , zn and the log structure ME where 
E = ∪n

i=1 V (zi). This is the log structure induced by the map β : Nn → OX (X) : (a1, . . . , an) �→ ∏n
i=1 zai

i . In this case, X log is 
homeomorphic to 

(
S1

)n × (
R≥0

)n
and πX : X log → X is(

S1
)n ×

(
R≥0

)n → X : (r1, . . . , rn, s1, . . . , sn) �→ (r1s1, . . . , rnsn).

Recall our morphism f : X → D from the introduction. We equip X with the log structure M = MX0 induced by 
X0 = f −1(0). On D we consider the log structure M{0} induced by the origin. Hence f : X → D is a log morphism. This 
morphism is determined by a global section of M , which we will also denote by f . We now can define the tube around 
X0 = f −1(0) in X .

Definition 3.1. The tube X of f : X → D around the special fibre X0 is defined to be

X =
{
(x,ϕ) ∈ X log | f (x) = 0

}
⊆ X log.

Remark that X log is equipped with a continuous map X log → S1 : (x, ϕ) �→ ϕ( fx). Both this map and the restriction 
f tube :X → S1 : (x, ϕ) �→ ϕ( fx) are locally trivial fibrations, which follows from the fact that X0 has strict normal crossings.
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4. Extending the log space

Recall that there exists a monodromy action on X log by lifting a generator of the fundamental group of D log = S1 ×[0, η)

since f log is a locally trivial fibration. Our goal is to describe this action more easily. To do so, we will introduce an 
intermediate space XextLog and consider its closed subspace XMF , which turns out to be homotopic to X .

Define T̃ to be the log variety whose underlying space is a point and log structure

R≥0
× × S1 ×R≥0

+ →C : (r, s, p) �→ rs.

Definition 4.1. Let X be a fs log variety. The extended logarithmic space XextLog is defined as the set X(T̃ ) = Hom(T̃ , X). 
This is the same as the set{

(x,ϕ,ψ)
∣∣x ∈ X,ϕ ∈ Hom(Mx, S1),ψ ∈ Hom(Mx,R

≥0
+ ) such that (x,ϕ) ∈ X log}.

The natural morphism of log varieties T̃ → T induces maps ρX : XextLog → X and σX : XextLog → X log with the property 
ρX = πX ◦ σX .

We endow XextLog with the weakest topology such that ρX is continuous and such that the map

j : U extLog → U × Hom(P , S1) × Hom(P ,R≥0
+ ) : (x,ϕ,ψ) �→ (x,ϕ ◦ βx,ψ ◦ βx)

is continuous for every open U for which there exists a chart β : P →M(U ) with P fs.
Remark that

Mx/O×
X,x

∼= (P ⊕OX,x O
×
X,x)/O

×
X,x

∼= P/β−1
x (O×

X,x).

A morphism ψ :Mx →R≥0
+ is thus fully determined by the induced map P/β−1

x (O×
X,x) →R≥0

+ since O×
X,x is a subgroup of 

the monoid Mx and must be send to a subgroup of R≥0
+ , which can only by {0}. Hence the map j is injective and the image 

is the closed subspace defined by p(x) = ϕ(p)|p(x)| and ψ(p)p(x) = 0 for all p ∈ P where (x, ϕ, ψ) ∈ X × Hom(P , S1) ×
Hom(P , R≥0

+ ).
In addition, we have a continuous map XextLog → X log : (x, ϕ, ψ) �→ (x, ϕ) and a natural injection X log → XextLog :

(x, ϕ) �→ (x, ϕ, 0). Via this map, X log is a closed subspace of XextLog and the space X log is a retract of XextLog. This is 
also a consequence of the following stronger result.

Proposition 4.2. There exists a strong deformation retraction of XextLog onto X log .

Proof. Define

XextLog × [0,1] → XextLog : ((x,ϕ,ψ),λ) �→ (x,ϕ, (1 − λ) · ψ) (1)

where (1 − λ) · ψ :Mx → (R≥0,+) : m �→ (1 − λ)ψ(m). �
We will now introduce our (candidate) monodromy action on XextLog.

Definition 4.3. Consider λ ∈ [0, 1]. Define

gλ : XextLog → XextLog : (x,ϕ,ψ) �→ (x,ϕ · ϕψ,λ,ψ)

where ϕψ,λ :Mx �→ S1 : a �→ exp (2πiλψ (a)).

This definition is functorial in nature: given a morphism of fs log varieties h : X → Y , we have an induced map hextLog :
XextLog → Y extLog and

hextLog ◦ gλ = gλ ◦ hextLog. (2)

Example 7. Let X = A1
C

as in Example 5. In this case we have

XextLog =
{
(z, s,q) ∈ C× S1 ×R≥0 | z = s|z|, zq = 0

}
=

{
(r, s,q) ∈ R≥0 × S1 ×R≥0 | rq = 0

}
and

gλ : XextLog → XextLog : (z, s,q) �→ (z, s exp (2πiλq) ,q).
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Example 8. We continue Example 6. We find that

XextLog =
{
(r1, . . . , rn, s1, . . . , sn,q1, . . . ,qn) ∈

(
R≥0

+
)n ×

(
S1

)n ×
(
R≥0

+
)n ∣∣∣∀i ∈ {1, . . . ,n} : riqi = 0

}
such that

gλ : XextLog → XextLog : (r1, . . . , rn, s1, . . . , sn,q1, . . . ,qn)

�→ (r1, . . . , rn, s1 exp(2πiλqi), . . . , sn exp(2πiλqn),q1, . . . ,qn) .

5. Milnor fibration

We now continue looking at the log morphism f : X → D . The induced continuous map on the corresponding extended 
log spaces can be described as follows:

XextLog → DextLog : (x,ϕ,ψ) �→ (| f (x)|,ϕ( fx),ψ( fx)) . (3)

Definition 5.1. Define

XMF := {(x,ϕ,ψ) ∈ XextLog | ψ( f ) = 1}
and we call

fMF : XMF → S1 : (x,ϕ,ψ) �→ ϕ( f ),

the A’Campo extension of the Milnor fibration associated with f .

Remark that if (x, ϕ, ψ) ∈ XMF , the fact that ψ( f ) = 1 implies that | f (x)| = 0 and thus x ∈ X0 = f −1(0). Hence XMF
closely resembles X .

Example 9. We continue Example 7 and we consider f = zN . Then XMF = S1 and fMF : S1 → S1 : z �→ zN . Under this 
isomorphism gλ becomes

gx,λ : S1 → S1 : z �→ e
2πiλ

N z

and thus this coincides with lifting a generator of the fundamental group.

Example 10. Consider X as in Example 8 and f = ∏n
i=1 xNi

i such that Ni > 0 for all i ∈ {1, . . . , n}. We see that

XMF =
{

(r1, . . . , rn, s1, . . . , sn,q1, . . . ,qn) ∈
(
R≥0

)n × (S1)n ×
(
R≥0

)n ∣∣∣
n∑

i=1

Niqi = 1,∀i ∈ {1, . . . ,n} : riqi = 0
}

and

fMF : XMF → S1 : (r1, . . . , rn, s1, . . . , sn,q1, . . . ,qn) �→
n∏

i=1

sNi
i .

We now can make the following observation: consider an element x ∈ X in which i > 0 irreducible components of X0
meet. If we compare X to XMF above x, we have added a standard simplex �i−1. A’Campo described XMF in [1] exactly in 
terms of these standard simplices and defined gλ similarly. He used however a different normalization of �i−1.

We formulate now some properties concerning the map fMF and XMF .

Proposition 5.2.

(i) The map fMF is a locally trivial fibration.
(ii) Under the homotopy defined in (1), XMF is deformed into X .

(iii) The space XMF is invariant under gλ for all λ ∈ [0, 1].
(iv) Moreover, we have that

( fMF ◦ gλ)(x,ϕ,ψ) = exp(2πiλ) fMF(x,ϕ,ψ)

for all λ ∈ [0, 1] and (x, ϕ, ψ) ∈ XMF .
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Proof. (i): This is the construction described in [1] and the gλ coincide. (ii): Remark that there exists (x, ϕ, ψ) ∈ XMF if and 
only if f (x) = 0. (iii) and (iv): This follows from equation (2). �

We call M XMF := g1|XMF
: XMF → XMF the (geometric) monodromy on XMF . It is a lift of a generator of the fundamental 

group of S1. We conclude this section by remarking that this is exactly what we wanted.

Theorem 5.3. The fibers of fMF : XMF → S1 are homotopic to the fibers of the Milnor fibration. Moreover, both can be deformed into 
f tube :X → S1 .

Proof. Remark for this that X \ X0 ⊂ X log ⊃ X and that X can be deformed into XMF . Since they behave well with respect 
to f , f log, f tube and fMF , the theorem follows. �
Remark 1. In the case where X0 does not have strict normal crossings, we are still able to define XMF and X .

Fix an embedded resolution of singularities π : X ′ → X and consider f ′ = f ◦ π : X ′ → D . We then define f tube : X → S1

to be ( f ′)tube : X ′ → S1. This definition however depends on the choice of embedded resolution, but Theorem 5.3 implies 
that ( f ′)tube :X ′ → S1 is homotopic to f : X \ X0 → D \ {0}, and thus this definition is well-defined up to homotopy.

Similarly, we can define XMF and gλ together with the map fMF up to homotopy.

6. The analytic Milnor fiber

6.1. Special formal schemes

We can extend the definition of f tube : X → S1 and XMF to the setting of special formal C[ [t] ]-schemes. Given a fs log 
special formal C[ [t] ]-scheme X, we can construct topological spaces Xlog and XextLog generalizing the definitions of X log and 
XextLog given above.

We endow SpfC[ [t] ] with its standard log structure induced by N → C[ [t] ] : n �→ tn . Then (SpfC[[t]])log ∼= S1. Now consider 
a generically smooth special formal C[ [t] ]-scheme X and fix a resolution of singularities X′ →X. See [3, Section 2] for more 
details on special formal C[ [t] ]-schemes. We can equip X′ with the log structure Mη , the log structure induced by the 
generic fibre of X′ . We define Xtube to be X′log. It comes equipped with a morphism p : Xtube → SpfC[[t]]tube = S1 of 
topological spaces. Assuming a suitable weak factorization theorem for generically smooth special formal schemes, one can 
show that this definition is independent of the choice of X′ up to homotopy. The necessary weak factorization theorem is 
part of a work in progress by Abramovich and Temkin. It can also be shown that p : Xtube → S1 is a locally trivial fibration 
by exploiting the topology of the special fiber X′

s of X′ and the structure of S1.

6.2. The analytic Milnor fibre

This has interesting applications to the study of the analytic Milnor fibre, which was introduced by Nicaise and Sebag 
in [4]. Consider a smooth, irreducible algebraic C-variety X and a dominant morphism f : X → A1

C
= SpecC[t]. Let x ∈ V ( f )

and denote by Fx the topological Milnor fiber of f at x. The analytic Milnor fiber Fx of f at x is, by definition, the generic 
fibre of the special formal scheme Spf ÔX,x → SpfC[ [t] ] obtained from f by completion at x. It is a smooth analytic space 
over the non-Archimedean field C( (t) ).

Let C{ {t} } be an algebraic closure of C( (t) ). Theorem 9.2 in [4] states that there exist canonical isomorphisms

Hi
sing(Fx,Ql) ∼= Hi

(
Fx×̂Ĉ{{t}},Ql

)
,

such that the monodromy action on the left-hand side corresponds to the action of the canonical topological generator 
of Gal(C{ {t} }/C( (t) )) on the right-hand side. Hence, Fx captures the cohomology of the Milnor fibre Fx , together with the 
monodromy action.

Our results imply the following theorem.

Theorem 6.1. The analytic Milnor fibre Fx determines the homotopy type of Fx.

Indeed, it follows from our results that, for every special formal C[ [t] ]-model X of Fx , the map p : Xtube → S1 is homo-
topic to the Milnor fibration of f at x.
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