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We introduce an equivalence relation on W s,p(SN ; SN ) involving the topological degree, 
and we evaluate the distances (in the usual sense and in the Hausdorff sense) between the 
equivalence classes. In some special cases, we even obtain exact formulas. Next we discuss 
related issues for W 1,p(�; S1).
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r é s u m é

On introduit une relation d’équivalence sur W s,p(SN ; SN ) liée au degré topologique, et on 
présente des estimées pour les distances (au sens usuel et au sens de Hausdorff) entre les 
classes d’équivalence. Dans certains cas particuliers, il s’agit même de formules exactes. On 
considère ensuite des questions semblables pour W 1,p(�; S1).

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We report on two recent works [5] and [4] concerning distances between classes of Sobolev maps taking their values 
in SN , in two different settings. In the first part, we deal with distances in W s,p(SN ; SN ) [5]. The classes in this case 
correspond to the equivalence relation f ∼ g if and only if deg f = deg g . As we will recall below, the topological degree 
makes sense not only for continuous maps, but also for VMO-maps, and in particular for maps in W s,p(SN ; SN ) with sp ≥ N . 
In the second part, we consider distances between classes of W 1,p(�; S1), where � is a smooth bounded simply connected 
domain in RN , N ≥ 2 and p ∈ [1, 2). In contrast with the first setting, the decomposition into classes is not due to the 
nontrivial topology of the domain (SN in the first setting), but instead it is related to the location and topological degree 
of the singularities of the maps in each class. More precisely, the classes are defined according to an equivalence relation: 
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u ∼ v if and only if there exists ϕ ∈ W 1,1(�; R) such that u = eıϕ v . This definition is analogous to the one used in the first 
part when N = 1, see Remark 1 below. This is an indication of a deep connection between the two parts. Actually, we are 
going to see (in Remark 5) that the results concerning W 1,1(S1; S1) in Section 2 can be viewed as special cases of analogous 
results about W 1,1(�; S1) in Section 3.

2. Distances between homotopy classes of W s,p(SSSN ; SSSN )

The first author and L. Nirenberg [6] developed a concept of topological degree for map in VMO (SN ; SN ), N ≥ 1, which 
applies in particular to the (integer or fractional) Sobolev spaces W s,p(SN ; SN ) with

s > 0, 1 ≤ p < ∞ and sp ≥ N. (1)

We will make assumption (1) throughout this section. We define an equivalence relation on W s,p(SN ; SN ) by f ∼ g if 
and only if deg f = deg g . It is known that the homotopy classes of W s,p(SN ; SN ) are precisely the equivalence classes for 
the relation f ∼ g and are given by

Ed := { f ∈ W s,p(SN ;SN); deg f = d} where d ∈ Z; (2)

these classes depend not only on d, but also on s and p, but, in order to keep notations simple, we do not mention the 
dependence on s and p.

Remark 1. When N = 1 there is an alternative description of the equivalence relation f ∼ g . Given f , g ∈ W s,p(S1; S1), 
we have (see [2]):

f ∼ g if and only if f = eıϕ g for some ϕ ∈ W s,p(S1;R). (3)

Therefore, it makes sense to denote also Ed = E ( f ) when deg f = d. We shall use this notation in Remark 2 below.

Our purpose is to investigate the usual distance and the Hausdorff distance (in W s,p) between the classes Ed . For that 
matter we introduce the W s,p-distance between two maps f , g ∈ W s,p(SN ; SN ) by

dW s,p ( f , g) := | f − g|W s,p , (4)

where for h ∈ W s,p(SN ; RN+1) we let

|h|W s,p :=

∥∥∥∥∥∥∥h −
 

SN

h

∥∥∥∥∥∥∥
W s,p

,

and ‖ ‖W s,p is any one of the standard norms on W s,p . Let d1 �= d2 and define the following two quantities:

distW s,p (Ed1 ,Ed2) := inf
f ∈Ed1

inf
g∈Ed2

dW s,p ( f , g), (5)

and

DistW s,p (Ed1 ,Ed2) := sup
f ∈Ed1

inf
g∈Ed2

dW s,p ( f , g). (6)

It is conceivable that

DistW s,p (Ed1 ,Ed2) = DistW s,p (Ed2 ,Ed1),∀d1,d2 ∈ Z, (7)

but we have not been able to prove this equality (see Open Problem 1 below). Therefore we consider also the symmetric 
version of (6), which is nothing but the Hausdorff distance between the two classes:

H − distW s,p (Ed1 ,Ed2) = max
{

DistW s,p (Ed1 ,Ed2),DistW s,p (Ed2 ,Ed1)
}
. (8)

The usual distance distW s,p (Ed1 , Ed2 ) in certain (non-fractional) Sobolev spaces was investigated in works by J. Rubinstein 
and I. Shafrir [8], when s = 1, p ≥ N = 1, and S. Levi and I. Shafrir [7], when s = 1, p ≥ N ≥ 2. In particular, they obtained 
exact formulas for the distance (see [8, Remark 2.1], [7, Theorem 3.4]) and tackled the question whether this distance is 
achieved (see [8, Theorem 1], [7, Theorem 3.4]).

We pay special attention to the case where N = 1 and s = 1. In this case, we have several sharp results when we take

dW 1,p ( f , g) = | f − g|W 1,p :=
⎛
⎜⎝ ˆ

1

| ḟ − ġ|p

⎞
⎟⎠

1/p

. (9)
S
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The following result was obtained in [8] (see also [5]).

distW 1,p (Ed1 ,Ed2) = inf
f ∈Ed1

inf
g∈Ed2

dW 1,p ( f , g)

=
(

2

π

)
min

h∈Ed1−d2

⎛
⎜⎝ˆ

S1

|ḣ|p

⎞
⎟⎠

1/p

= 2(1/p)+1π(1/p)−1 |d1 − d2|.

(10)

In particular,

distW 1,1(Ed1 ,Ed2) = 4 |d1 − d2|. (11)

It is natural to ask whether, given d1 �= d2, the infimum in (10) is achieved. The answer is given by the following result, 
proved in [8] when p = 2.

Theorem 1. Let N = 1. Let d1, d2 ∈ Z, d1 �= d2 .

1. When p = 1, the infimum in (10) is always achieved.
2. When 1 < p < 2, the infimum in (10) is achieved if and only if d2 = −d1 .
3. When p ≥ 2, the infimum in (10) is not achieved.

For s = 1, N ≥ 2, p ≥ N , and for the semi-norm | f − g|W 1,p = ‖∇ f −∇g‖Lp , the exact value of the W 1,p distance distW 1,p

between the classes Ed1 and Ed2 , d1 �= d2, has been computed by S. Levi and I. Shafrir [7]. By contrast with (10), this distance 
does not depend on d1 and d2, but only on p (and N).

We now turn to the case s �= 1 and N ≥ 1. Here, we will only obtain the order of magnitude of the distances distW s,p , 
and thus our results are not sensitive to the choice of a specific distance among various equivalent ones. When 0 < s < 1, 
a standard distance is associated with the Gagliardo W s,p semi-norm

dW s,p ( f , g) :=
⎛
⎜⎝ ˆ

SN

ˆ

SN

|[ f (x) − g(x)] − [ f (y) − g(y)]|p

|x − y|N+sp
dxdy

⎞
⎟⎠

1/p

. (12)

We start with distW s,p .

Theorem 2. We have

1. If N ≥ 1 and 1 < p < ∞, then

distW N/p,p (Ed1 ,Ed2) = 0, ∀d1,d2 ∈ Z. (13)

2. If N = 1, s > 0, 1 ≤ p < ∞ and sp > 1, then

C ′
s,p |d1 − d2|s ≤ distW s,p (Ed1 ,Ed2) ≤ Cs,p |d1 − d2|s. (14)

3. If N ≥ 2, [1 < p < ∞ and s > N/p] or [p = 1 and s ≥ N], then

C ′
s,p,N ≤ distW s,p (Ed1 ,Ed2) ≤ Cs,p,N , ∀d1,d2 ∈ Z such that d1 �= d2. (15)

In the above, C , C ′ are positive constants independent of d1, d2.

We now turn to DistW s,p .

Theorem 3. We have

1. If N = 1, s = 1 and p = 1, then

DistW 1,1(Ed1 ,Ed2) = 2π|d1 − d2|, ∀d1,d2 ∈ Z. (16)

2. If N ≥ 1 and 1 ≤ p < ∞, then

DistW N/p,p (Ed1 ,Ed2) ≤ C p,N |d1 − d2|1/p, ∀d1,d2 ∈ Z. (17)
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3. If N ≥ 1 and sp > N, then

DistW s,p (Ed1 ,Ed2) = ∞, ∀d1,d2 ∈ Z such that d1 �= d2. (18)

The detailed proofs appeared in [5]. We call the attention of the reader to a new idea which yields inequality “≥” in (16)
in a “more uniform” way; this will become clear in Remark 5 below.

Remark 2. For later use it is convenient to reformulate (11) and (16) as follows. Assume N = 1, s = 1 and p = 1. Then 
∀ f , g ∈ W 1,1(S1; S1) we have

distW 1,1(E ( f ),E (g)) = 4|deg( f ḡ)| (19)

and

DistW 1,1(E ( f ),E (g)) = 2π|deg( f ḡ)|. (20)

In particular, ∀ f ∈ W 1,1(S1; S1) we have

4|deg f | ≤ distW 1,1( f ,E0) ≤ 2π|deg f |. (21)

Moreover the constants 4 and 2π in (21) are optimal.

Here are two natural questions that we could not solve.

Open Problem 1. Is it true that for every d1, d2 ∈ Z, N ≥ 1, s > 0, 1 ≤ p < ∞,

DistW s,p (Ed1 ,Ed2) = DistW s,p (Ed2 ,Ed1)? (22)

Or even better:

Does DistW s,p (Ed1 ,Ed2) depend only on |d1 − d2| (and s, p, N)? (23)

There are several cases where we have an explicit formula for DistW s,p (Ed1 , Ed2) and in all such cases (23) holds. We may 
also ask questions similar to (23) for distW s,p (Ed1 , Ed2 ) and for H − distW s,p (Ed1 , Ed2) (assuming that the answer to (23) is 
negative). A striking special case still open when N = 1 is: does distW 2,1 (Ed1 , Ed2) depend only on |d1 − d2|?

Open Problem 2. Is it true that for every N ≥ 1 and every 1 ≤ p < ∞, there exists some C ′
p,N > 0 such that

H − distW N/p,p (Ed1 ,Ed2) ≥ C ′
p,N |d1 − d2|1/p, ∀d1,d2 ∈ Z? (24)

Even better, do we have

DistW N/p,p (Ed1 ,Ed2) ≥ C ′
p,N |d1 − d2|1/p, ∀d1,d2 ∈ Z? (25)

Some partial answers to these open problems are presented in [5].

3. Distances between classes in W 1,p(�; SSS1)

Let � be a smooth bounded domain in RN , N ≥ 2. In order to simplify the presentation, we assume throughout that �
is simply connected; however, many of the results remain valid without this assumption (see, e.g., Remark 5 below). In this 
section, we decompose W 1,p(�; S1) into equivalence classes and study their distances. We start with the case p = 1 and 
recall two basic “negative” facts originally discovered by F. Bethuel and X. Zheng [1] (see also [2] for an updated and more 
detailed presentation).

Fact 1. Maps u of the form u = eıϕ with ϕ ∈ W 1,1(�; R) belong to W 1,1(�; S1). However they do not exhaust W 1,1(�; S1): 
there exist maps in W 1,1(�; S1) which cannot be written as u = eıϕ for some ϕ ∈ W 1,1(�; R). We set

X = {u ∈ W 1,1(�;S1) ; u = eıϕ for some ϕ ∈ W 1,1(�;R)}. (26)

Fact 2. Maps in C∞(�; S1) are not dense in W 1,1(�; S1). In fact (see, e.g., [2]) we have

X = C∞(�;S1)
W 1,1

. (27)

We now introduce an equivalence relation in W 1,1(�; S1):

u ∼ v if and only if u = eıϕ v for some ϕ ∈ W 1,1(�;R). (28)

We denote by E (u) the equivalence class of an element u ∈ W 1,1(�; S1). In particular, if u = 1, then E (u) = X .
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A useful device for constructing maps in the same equivalence class is the following (see [4]). Let T ∈ Lip(S1; S1) be a 
map of degree one. Then

T ◦ u ∼ u ∀ u ∈ W 1,1(�;S1). (29)

With each u ∈ W 1,1(�; S1), we associate a number �(u) ≥ 0 defined by

�(u) = inf
v∈E (u)

ˆ

�

|∇v|. (30)

Note that

�(u) = inf
ψ∈W 1,1(�;R)

ˆ

�

|u ∧ ∇u − ∇ψ |. (31)

This follows from the identities

(uv) ∧ ∇(uv) = u ∧ ∇u + v ∧ ∇v ∀ u, v ∈ W 1,1(�;S1), (32)

eıϕ ∧ ∇(eıϕ) = ∇ϕ ∀ϕ ∈ W 1,1(�;R), (33)

ū ∧ ∇ū = −u ∧ ∇u ∀ u ∈ W 1,1(�;S1). (34)

The quantity �(u) was originally introduced in [3] when N = 2. It plays an extremely important role in many questions 
involving W 1,1(�; S1) (see [2]). In some sense, it measures how much a given u ∈ W 1,1(�; S1) “deviates” from X . By (30)
we have, u ∼ v =⇒ �(u) = �(v). Moreover we have (see [2]):

u ∼ 1 ⇐⇒ �(u) = 0, (35)

and

�(uv̄) ≥ |�(u) − �(v)| ∀ u, v ∈ W 1,1(�;S1). (36)

Given u0, v0 ∈ W 1,1(�; S1) such that u0 is not equivalent to v0, it is of interest to consider the distance of u0 to E (v0)

defined by

dW 1,1(u0,E (v0)) = inf
v∼v0

ˆ

�

|∇u0 − ∇v|,

and define, analogously to (5)–(6),

distW 1,1(E (u0),E (v0)) : = inf
u∼u0

dW 1,1(u,E (v0))

= inf
u∼u0

inf
v∼v0

ˆ

�

|∇(u − v)|, (37)

DistW 1,1(E (u0),E (v0)) : = sup
u∼u0

dW 1,1(u,E (v0))

= sup
u∼u0

inf
v∼v0

ˆ

�

|∇(u − v)|. (38)

The next theorem provides explicit formulas for these two quantities.

Theorem 4. For every u0, v0 ∈ W 1,1(�; S1), we have

distW 1,1(E (u0),E (v0)) = 2

π
�(u0 v0) (39)

and

DistW 1,1(E (u0),E (v0)) = �(u0 v0). (40)

The two assertions in Theorem 4 look very simple but the proofs are quite tricky (see [4]). Note in particular that it 
follows from (40) that DistW 1,1 is symmetric, which is not clear from its definition (compare with Open Problem 1).
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Remark 3. There is an alternative point of view on the equivalence relation u ∼ v using the Jacobian of u. For every u ∈
W 1,1(�; S1) consider the antisymmetric matrix with coefficients in D′ defined by

J u := 1

2

[
∂

∂xi

(
u ∧ ∂u

∂x j

)
− ∂

∂x j

(
u ∧ ∂u

∂xi

)]
.

One can show (see [2]) that ∀ u, v ∈ W 1,1(�; S1),

u ∼ v if and only if J (uv̄) = J u − J v = 0. (41)

Remark 4. In order to have a feeling for the equivalence relation u ∼ v , it is instructive to understand what it means, when 
N = 2 and � is simply connected, for u, v ∈ R where

R = {u ∈ W 1,1(�;S1) ; u is smooth except at a finite number of points}.
The class R plays an important role since it is dense in W 1,1(�; S1) (see [1,2]). If u ∈ R then J u = π 

∑
k jδa j where a j are 

the singular points of u and k j = deg(u, a j). In particular, when u, v ∈ R, then u ∼ v if and only if u and v have the same 
singularities and the same degree for each singularity.

A special case of interest is the distance of a given u ∈ W 1,1(�; S1) to the class E (1) = X = C∞(�;S1)
W 1,1

(see 
(26)–(27)) that we denote for convenience

d(u, X) = dW 1,1(u, X) = inf

⎧⎨
⎩
ˆ

�

|∇u − ∇(eıϕ)| ; ϕ ∈ W 1,1(�;R)

⎫⎬
⎭ . (42)

An immediate consequence of Theorem 4 is that for every u ∈ W 1,1(�; S1), we have

2

π
�(u) ≤ d(u, X) ≤ �(u), (43)

and the bounds are optimal in the sense that

sup
�(u)>0

d(u, X)

�(u)
= 1, (44)

and

inf
�(u)>0

d(u, X)

�(u)
= 2

π
. (45)

The proof of (40) actually provides an explicit recipe for constructing “maximizing sequences” for DistW 1,1 . In order to 
describe it, we first introduce, for each n ≥ 3, a map Tn ∈ Lip(S1; S1) with deg Tn = 1 by Tn(eıθ ) = eıτn(θ) , with τn defined 
on [0, 2π] by setting τn(0) = 0 and

τ ′
n(θ) =

{
n, θ ∈ [2 j π/n2), (2 j + 1)π/n2]
−(n − 2), θ ∈ ((2 j + 1)π/n2), (2 j + 2)π/n2] , j = 0,1, . . . ,n2 − 1. (46)

A basic ingredient in the proof of (40) in Theorem 4 is the following Theorem.

Theorem 5. For every u0, v0 ∈ W 1,1(�; S1) such that u0 �∼ v0 , we have

lim
n→∞

dW 1,1(Tn ◦ u0,E (v0))

�(u0 v0)
= 1 (47)

and the limit is uniform over all such u0 and v0 .

From (29), it is clear that Theorem 5 implies inequality “≥” in (40). The inequality “≤” in (40) is an immediate conse-
quence of the following result established in [4]:

dW 1,1(u,E (v0)) ≤ �(u0 v0), ∀ u0, v0 ∈ W 1,1(�;S1), ∀ u ∈ E (u0). (48)
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We now discuss briefly the proof of Theorem 5. Inequality “≤” in (47) is a consequence of (48). The heart of the proof 
of inequality “≥” in (47) is the next lemma.

Lemma 6. For each δ > 0 there exists n1 = n1(δ) such that for every u, v ∈ W 1,1(�; S1) and n ≥ n1 there holdsˆ

�

|∇(Tn ◦ u) − ∇v| ≥ (1 − δ)�(uv).

Remark 5. Note the similarity between the definitions of f ∼ g in W s,p(S1; S1) (see (3)) and u ∼ v in W 1,1(�; S1) (see (28)) 
and also the analogy between (19)–(20) and Theorem 4 where | deg f | plays a role similar to �(u). In fact, the analogy goes 
beyond the formal resemblance of the formulas. In the above, we could replace � by a manifold M (with or without 
boundary, simply connected or not). Theorem 4 holds as is and this is the case also for Theorem 5 and Lemma 6. Choosing 
M = S

1 one sees easily that �(u) = 2π| deg u|, for all u ∈ W 1,1(S1; S1). Indeed, denoting k = deg u, we have, on the one 
hand, for w(z) = zk , 

´
S1 |ẇ| = ´

S1 |w ∧ ẇ| = 2π|k|, and, on the other hand, for all v ∈ E (u),

ˆ

S1

|v̇| =
ˆ

S1

|v ∧ v̇| ≥

∣∣∣∣∣∣∣
ˆ

S1

v ∧ v̇

∣∣∣∣∣∣∣ = 2π|k|.

Hence some results from Section 2 about W 1,1(S1; S1) become special cases of Theorem 4. It is interesting to write explicitly 
the statement of Theorem 5 for the special case � = S

1. It improves upon [5, Lemma 3.1] by providing a “more uniform” 
estimate:

For all f , g ∈ W 1,1(S1; S1) with deg f �= deg g , we have

lim
n→∞

dW 1,1(Tn ◦ f ,E (g))

2π|deg f − deg g| = 1

and the limit is uniform over all such f and g .

There are many challenging open problems concerning the question whether the supremum and the infimum in various 
formulas above are achieved. Here are some brief comments, restricted to the case N = 2; we refer to [2,4] for further 
discussions.

(i) The question whether the infimum in (30) is achieved is extensively studied in [2]. The answer is delicate and depends 
heavily on � and u.

(ii) Concerning the infimum in (42), the answer is positive when � is the unit disc and u(x) = x

|x| , and in some other 

cases satisfying d(u, X) = (2/π)�(u) (see [4]). In general, the question is widely open.
(iii) Concerning the infimum in (45), the answer seems to depend on the shape of �. We know that when � is the 

unit disc, the infimum in (45) is achieved by u(x) = x

|x| . On the other hand, it seems plausible that if � is the interior of a 

non-circular ellipse, then the infimum in (45) is not achieved.
(iv) The question whether the supremum in (44) is achieved is widely open. We suspect that the supremum in (44) is 

achieved in every domain, but we do not know any domain in which the supremum is achieved.

Finally, we turn to the classes in W 1,p(�; S1), 1 < p < 2, defined in the same way as in the W 1,1-case. The distances 
between the classes are defined analogously to (37)–(38) by

distW 1,p (E (u0),E (v0)) := inf
u∼u0

inf
v∼v0

‖∇(u − v)‖L p(�) (49)

and

DistW 1,p (E (u0),E (v0)) := sup
u∼u0

inf
v∼v0

‖∇(u − v)‖L p(�). (50)

We first establish a lower bound for distW 1,p :

Proposition 1. For every u0, v0 ∈ W 1,p(�; S1), we have

distW 1,p (E (u0),E (v0)) ≥
(

2

π

)
inf

w∼u0 v0

‖∇w‖L p(�). (51)
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Remark 6. For p > 1 the infimum on the R.H.S. of (51) is actually a minimum, see [2].

We do not know whether the lower bound in (51) is optimal:

Open Problem 3. Is there equality in (51) for every u0, v0 ∈ W 1,p(�; S1)?

We suspect that the answer might be negative in general. We are able to prove that the answer is positive in the case 
of the distance to smooth maps:

Theorem 7. For every u0 ∈ W 1,p(�; S1), p ∈ (1, 2), we have

distW 1,p (E (u0),E (1)) =
(

2

π

)
inf

w∼u0 v0

‖∇w‖L p(�). (52)

By analogy with item 3 in Theorem 3, we have the following result:

Theorem 8. For every u0, v0 ∈ W 1,p(�; S1) such that u0 �∼ v0 , we have

DistW 1,p (E (u0),E (v0)) = ∞. (53)

The detailed proofs of the results on W 1,p(�; S1), p ∈ [1, 2), will appear in [4].
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