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We say that f : [0, 1] → [0, 1] is a piecewise continuous interval map if there exists a 
partition 0 = x0 < x1 < · · · < xd < xd+1 = 1 of [0, 1] such that f |(xi−1,xi ) is continuous 
and the lateral limits w+

0 = limx→0+ f (x), w−
d+1 = limx→1− f (x), w−

i = limx→x−
i

f (x) and 
w+

i = limx→x+
i

f (x) exist for each i. We prove that every piecewise continuous interval 
map without connections admits an invariant Borel probability measure. We also prove 
that every injective piecewise continuous interval map with no connections and no peri-
odic orbits is topologically semiconjugate to an interval exchange transformation.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On dit que f : [0, 1] → [0, 1] est une application d’intervalle continue par morceaux s’il existe 
une partition 0 = x0 < x1 < · · · < xd < xd+1 = 1 de [0, 1] telle que f |(xi−1,xi ) est conti-
nue et telle que les limites latérales w+

0 = limx→0+ f (x), w−
d+1 = limx→1− f (x), w−

i =
limx→x−

i
f (x) et w+

i = limx→x+
i

f (x) existent pour chaque i. On prouve que toute applica-

tion d’intervalle continue par morceaux sans connexion admet une mesure de probabilité 
invariante. On prouve également que toute application injective d’intervalle continue par 
morceaux sans connexion et sans orbite périodique est topologiquement semiconjuguée à 
un échange d’intervalles.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Much information about the long-term behaviour of the iterates of a map is revealed by its invariant measures. Regard-
ing piecewise continuous interval maps, the presence of a non-atomic invariant Borel probability measure can be used to 
construct topological conjugacies or semiconjugacies with interval exchange transformations (IETs).
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Transfer operators have proved to be an important tool to obtain absolutely continuous invariant probability measures 
for piecewise smooth piecewise monotone interval maps (see [1,3–5,9]). In general, these types of results assume that each 
branch of the piecewise continuous map is Cr -smooth (r ≥ 1), monotone and has derivative greater than 1.

The aim of this article is to prove the existence of invariant Borel probability measures for piecewise continuous interval 
maps not embraced by the transfer operator approach. In this way, our result includes gap maps, piecewise contractions 
and generalised interval exchange transformations (GIETs). No monotonicity and no smoothness assumptions, beyond the 
uniform continuity of each branch of the map, are assumed. Our result is the natural version of the Kryloff–Bogoliouboff 
Theorem (see [8]) for piecewise continuous interval maps.

We are also interested in constructing topological semiconjugacy between injective piecewise continuous interval maps 
and interval exchange transformations, possibly with flips. In this regard, it is worth mentioning the result by J. Milnor 
and W. Thurston (see [12]), which states that any continuous piecewise monotone interval map of positive entropy htop
is topologically semiconjugate to a map with constant slope equal to ±ehtop. This result was generalised by L. Alsedà and 
M. Misiurewicz in [2] to piecewise continuous piecewise monotone interval maps of positive entropy. Concerning count-
ably piecewise continuous piecewise monotone interval maps, a necessary and sufficient condition for the existence of a 
non-decreasing semiconjugacy to a map of constant slope was provided by M. Misiurewicz and S. Roth in [13]. The author 
and A. Nogueira proved in [14] that every injective piecewise contraction is topologically conjugate to a map with constant 
slope equal to ± 1

2 .
The proof of the Kryloff–Bogoliouboff Theorem fails for discontinuous maps. In this article, we present a variation of 

this proof that overcomes such limitation. The hypothesis of no connections cannot be removed since there are examples of 
piecewise continuous maps that have connections and admit no Borel invariant measure. The proof presented here does not 
hold for countably piecewise continuous maps since for such maps the lateral limits might not exist at all points of [0, 1].

2. Statement of the results

Throughout this article, assume that f : [0, 1] → [0, 1] is a piecewise continuous interval map. Hence, there exists a par-
tition 0 = x0 < x1 < · · · < xd < xd+1 = 1 of [0, 1] such that f |(xi−1,xi) is continuous and the lateral limits w+

0 = limx→0+ f (x), 
w−

d+1 = limx→1− f (x), w−
i = limx→x−

i
f (x) and w+

i = limx→x+
i

f (x) exist for each i. Let

D = {x0, . . . , xd+1}, W = {w+
0 , w−

1 , w+
1 , . . . , w−

d , w+
d , w−

d+1}.
We say that f has no connections if

⋃
w∈W

∞⋃
k=0

{ f k(w)} ∩ D = ∅. (1)

We say that x ∈ [0, 1] is a periodic point of f if there exists an integer k ≥ 1 such that f k(x) = x.
Our first result turns out to be a version of the Kryloff–Bogoliouboff Theorem [8] for piecewise continuous interval maps.

Theorem 2.1. Let f : [0, 1] → [0, 1] be a piecewise continuous map with no connections, then f admits an invariant Borel probability 
measure μ. Moreover, if f has no periodic points, then the measure μ is non-atomic.

The hypothesis of no connections in the statement of Theorem 2.1, although more readily checkable, may sound a bit 
restrictive because, for instance, it prohibits that a left-continuous map f takes one discontinuity into another. Indeed, what 
needs to be avoided for the existence of the invariant measure is the presence of closed connections, a more technical notion 
given in Section 3.

In the world of generalised interval exchange transformations, the hypothesis of no connections corresponds to the notion 
of having an ∞-complete path. As remarked in [11, p. 1586], every GIET with such property is topologically semiconjugate 
to an IET. The next result extends this claim to piecewise continuous maps. It can also be considered a generalisation of the 
item (a) of the Structure Theorem by Gutierrez [6, p. 18].

Corollary 2.2. Let f : [0, 1] → [0, 1] be an injective piecewise continuous map with no connections and no periodic points, then f is 
topologically semiconjugate to an interval exchange transformation, possibly with flips.

Now we present a class of piecewise continuous interval maps for which having no connections is a generic (in the 
measure-theoretical sense) property. We recall that an irrationality criterion for the absence of connections in IETs without 
flips was provided by M. Keane in [7].

Theorem 2.3. Let φ1, . . . , φd+1 : [0, 1] → (0, 1) be continuous maps and let � ⊂ R
d be the open set � = {(x1, . . . , xd) ∈ R

d | 0 <
x1 < · · · < xd < 1}, then for Lebesgue almost every (x1, . . . , xd) ∈ �, the piecewise continuous map f : [0, 1] → (0, 1) defined by 
f (x) = φi(x) if x ∈ Ii , where I1 = [0, x1), I2 = [x1, x2), . . . , Id = [xd−1, xd), Id+1 = [xd, 1], has no connections and hence admits an 
invariant Borel probability measure.
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3. Proof of Theorem 2.1

Henceforth, assume that the map f has no connections and no periodic orbits.

Lemma 3.1. Given x ∈ [0, 1] and an integer r ≥ 1, there exists an open subinterval J x of [0, 1] containing x such that

{ f (y), . . . , f r(y)} ∩ J x = ∅ for every y ∈ J x. (2)

Proof. First let us prove the result for x = xi , where 1 ≤ i ≤ d. Let

γ =
r⋃

k=1

{ f k−1(w−
i ), f k(xi), f k−1(w+

i )}.

By the uniform continuity of f |(x j−1,x j) , 1 ≤ j ≤ d + 1, together with the hypothesis of no connections, we have that for 
every ε > 0, there exist 0 < δ < ε and an interval J xi = (xi − δ, xi + δ) ⊂ [0, 1] such that

d
(

f k(y), γ
)

< ε for every y ∈ J xi and 1 ≤ k ≤ r, (3)

where d 
(

f k(y), γ
) = minz∈γ | f k(y) − z|.

Let ε = 1
2 d(xi, γ ), then ε > 0, otherwise f would have a connection or a periodic orbit. This together with (3) implies 

that | f k(y) − xi | > ε > δ for all y ∈ J xi and 1 ≤ k ≤ r. Hence, (2) holds for every x = xi ∈ D .
The cases in which x = x0 = 0 or x = xd+1 = 1 follows likewise, by considering intervals of the form J x0 = [0, δ) and 

J xd+1 = (1 − δ, 1], respectively.
It remains to consider the case in which x /∈ {x0, . . . , xd+1}. Due to the hypothesis of no connections, there are only two 

possibilities: either { f k(x) : k ≥ 0} ∩ {x0, . . . , xd+1} = ∅ or there exist k ≥ 1 (take the least value) and 0 ≤ i ≤ d + 1 such that 
f k(x) = xi . As for the first possibility, take γ = { f (x), . . . , f r(x)}, then f is continuous on {x} ∪ γ . Moreover, since f has 
no periodic points, we have that x /∈ γ . Therefore, for every ε > 0, there exist 0 < δ < ε and an interval J x = (x − δ, x + δ)

such that (3) holds for J x in the place of J xi . To conclude the proof, proceed as before. Concerning the second possibility, 
let J xi = (xi − δ, xi + δ) be as in the beginning of the proof, then, as already proved,

{ f (y), . . . , f r(y)} ∩ J xi = ∅ for every y ∈ J xi . (4)

Moreover, since k is the least value, f is locally continuous around {x, f (x), . . . , f k−1(x)}, thus there exists an interval 
J x = (x − η, x + η) such that J x, f ( J x), . . . , f k( J x) are pairwise disjoint intervals and f k( J x) ⊂ J xi . Now (4) implies that (2)
holds for every y ∈ J x , which concludes the proof. �

Let q ∈ [0, 1] be given. Since f has no periodic orbits, there exists � ≥ 0 such that 
{

f k(q) : k ≥ �
} ∩ D = ∅. Hereafter, set 

p = f �(q), then

{p, f (p), f 2(p), . . .} ∩ D = ∅. (5)

Denote by (μn)∞n=1 the sequence of Borel probability measures on [0, 1] defined by

μn = 1

n

n−1∑
k=0

δ f k(p),

where δ f k(p) is the Dirac probability measure on [0, 1] concentrated at f k(p).
By the Banach–Alaoglu Theorem, the space of Borel probability measures on a compact metric space is compact with 

respect to the weak∗ topology. Hence, there exist a Borel probability measure on [0, 1], denoted henceforth by μ, and a 
subsequence of {μn}, denoted henceforth by {μn j }∞j=1, that converges to μ in the weak∗ topology.

The next result is going to be used twice, in Lemma 3.3 as well as in Lemma 3.5.

Lemma 3.2. Let x ∈ [0, 1]. Given ε > 0, there exist an open subinterval J x of [0, 1] containing x, and an integer j0 ≥ 1 such that

μn j ( J x) < ε for every j ≥ j0. (6)

Proof. Let r ≥ 1 be an integer so great that 
2

r
< ε . Since {n j}∞j=1 is a subsequence of {1, 2, . . .}, there exists j0 ≥ 1 such that 

n j > r for every j ≥ j0. Let J x be as in the statement of Lemma 3.1. Let j ≥ j0 and � = #{0 ≤ k ≤ n j − 1 | f k(p) ∈ J x}, where 
# denotes cardinality. By (2), we have that (� − 1)r ≤ n j , thus

μn j ( J x) = 1

n j

n j−1∑
k=0

δ f k(p)( J x) = #{0 ≤ k ≤ n j − 1 | f k(p) ∈ J x}
n j

≤ 2

r
< ε for every j ≥ j0. �
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Lemma 3.3. The measure μ is non-atomic.

Proof. Let x ∈ (0, 1). Given ε > 0, let J x be an open subinterval of [0, 1] containing x as in the statement of Lemma 3.2. 
Since the set S = {z ∈ [0, 1] : μ({z}) > 0} is at most countable, there exists a subinterval J ′

x ⊂ J x containing x such that 
μ 

(
∂ J ′

x

) = 0, where ∂ J ′
x denotes the endpoints of the interval J ′

x . By [15, Theorem 6.1, p. 40] and by (6),

μ({x}) ≤ μ( J ′
x) = lim

j→∞
μn j ( J ′

x) ≤ lim sup
j→∞

μn j ( J x) ≤ ε.

The fact that ε is arbitrary yields μ({x}) = 0.
Now let A1 ⊂ A2 ⊂ · · · be a sequence of subsets of [0, 1] such that 

⋃
k≥1 Ak = (0, 1) and ∂ Ak ∩ S = ∅ for every k ≥ 1. 

By (5), we have that μn j (Ak) = 1 for every j, k ≥ 1. By [15, Theorem 6.1, p. 40] once more, we have that

μ(Ak) = lim
j→∞

μn j (Ak) = 1 for every k ≥ 1.

In this way,

μ((0,1)) = lim
k→∞

μ(Ak) = 1, thus μ({0}) = μ({1}) = 0. �
The convergence of {μn j }∞j=1 to μ in the weak∗ topology implies that lim j→∞

∫
φ dμn j = ∫

φ dμ for every continuous
function φ : [0, 1] →R. The next lemma extends this claim for the piecewise continuous map φ = ϕ ◦ f .

Remark 3.4. As pointed out by C. Liverani in [10, p. 4], the point where the proof of the Kryloff–Bogoliouboff Theorem fails 
is Lemma 3.5, which is automatic for continuous functions.

Lemma 3.5. For every continuous function ϕ : [0, 1] →R,

lim
j→∞

∫
ϕ ◦ f dμn j =

∫
ϕ ◦ f dμ.

Proof. Let ε > 0 be arbitrarily small. By Lemma 3.3, we have that μ({xi}) = 0 for every 1 ≤ i ≤ d. Hence, there exists an 
open interval J ′

xi
containing xi such that μ( J ′

xi
) < ε for every 1 ≤ i ≤ d. By Lemma 3.2, there exist an open interval J ′′

xi
containing xi , and an integer j0 ≥ 1 such that

μn j

(
J ′′

xi

)
< ε for every j ≥ j0 and 1 ≤ i ≤ d.

Set J xi = J ′
xi

∩ J ′′
xi

. The function ϕ ◦ f is bounded by some constant M and continuous on each interval (xi−1, xi) for every 
1 ≤ i ≤ d + 1. In this way, there exists a continuous function h : [0, 1] → [−M, M] such that h(x) = ϕ ◦ f (x) for every 
x ∈ [0, 1] \ ⋃d

i=1 J xi . Putting it all together yields∣∣∣∣
∫

ϕ ◦ f dμn j −
∫

h dμn j

∣∣∣∣ ≤
∫

|ϕ ◦ f − h| dμn j ≤ 2M dε for every j ≥ j0, (7)

and ∣∣∣∣
∫

ϕ ◦ f dμ −
∫

h dμ

∣∣∣∣ ≤ 2M dε. (8)

Finally, since h is continuous on [0, 1] and μn j converges to μ in the weak* topology, there exists j1 ≥ j0 such that∣∣∣∣
∫

h dμn j −
∫

h dμ

∣∣∣∣ ≤ ε for every j ≥ j1. (9)

It follows from the equations (7), (8) and (9) that∣∣∣∣
∫

ϕ ◦ f dμn j −
∫

ϕ ◦ f dμ

∣∣∣∣ ≤ (4Md + 1)ε for every j ≥ j1,

which concludes the proof. �
Lemma 3.6 ([16, Theorem 6.2, p. 147]). Let m1 and m2 be two Borel probability measures on [0, 1]. If 

∫
ϕ dm1 =

∫
ϕ dm2 for every 

continuous function ϕ : [0, 1] →R, then m1 = m2 .
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Given a Borel probability measure m on [0, 1] and an integer k ≥ 1, let m ◦ f −k denote the Borel measure defined by 
(m ◦ f −k)(B) = m 

(
f −k(B)

)
for any Borel set B . In particular, for m = δp we have that δp ◦ f −k = δ f k(p) .

Lemma 3.7 ([16, Lemma 6.6, p. 150]). Let ψ : [0, 1] → R be a Borel-measurable function, k ≥ 1 an integer, and m a Borel probability 
measure on [0, 1], then∫

ψ ◦ f k dm =
∫

ψ d(m ◦ f −k).

Lemma 3.8. The measure μ is invariant by f .

Proof. By Lemma 3.6 and Lemma 3.7 (taking ψ = ϕ , k = 1 and m = μ), it suffices to show that∫
ϕ ◦ f dμ =

∫
ϕ dμ (10)

for every continuous function ϕ : [0, 1] →R. By Lemma 3.5, for every continuous function ϕ : [0, 1] →R,∣∣∣∣
∫

ϕ ◦ f dμ −
∫

ϕ dμ

∣∣∣∣ = lim
j→∞

∣∣∣∣
∫

ϕ ◦ f dμn j −
∫

ϕ dμn j

∣∣∣∣ . (11)

By Lemma 3.7 once more (now taking ψ = ϕ ◦ f and m = δp), we reach

∫
ϕ ◦ f dμn j = 1

n j

n j−1∑
k=0

∫
ϕ ◦ f d(δp ◦ f −k) = 1

n j

n j−1∑
k=0

∫
ϕ ◦ f k+1 dδp . (12)

Likewise,

∫
ϕ dμn j = 1

n j

n j−1∑
k=0

∫
ϕ d(δp ◦ f −k) = 1

n j

n j−1∑
k=0

∫
ϕ ◦ f k dδp . (13)

It follows from (11), (12) and (13) that

∣∣∣∣
∫

ϕ ◦ f dμ −
∫

ϕ dμ

∣∣∣∣ = lim
j→∞

∣∣∣∣∣∣
1

n j

∫ n j−1∑
k=0

(
ϕ ◦ f k+1 − ϕ ◦ f k

)
dδp

∣∣∣∣∣∣
= lim

j→∞

∣∣∣∣ 1

n j

∫ (
ϕ ◦ f n j − ϕ

)
dδp

∣∣∣∣
≤ lim

j→∞
2‖ f ‖

n j
= 0.

Hence, (10) holds, which concludes the proof. �
Remark 3.9. The proof of Theorem 2.1 follows from Lemmas 3.3 and 3.8.

4. Proof of the other results

Corollary 2.2. Let f : [0, 1] → [0, 1] be an injective piecewise continuous map with no connections and no periodic orbits, then f is 
topologically semiconjugate to an interval exchange transformation, possibly with flips.

Proof. By Theorem 2.1, f admits a non-atomic Borel probability measure μ invariant by f . Let h : [0, 1] → [0, 1] be defined 
by h(x) = μ ([0, x]), then h is a continuous non-decreasing surjective map. Let 1 ≤ i ≤ d + 1 and x, y ∈ (xi−1, xi) be such that 
h(x) = h(y). We claim that h ( f (x)) = h ( f (y)). Assume that x ≤ y and f (x) ≤ f (y), then, the injectivity of f together with 
the continuity of f |(xi−1,xi) yields [x, y] = f −1 ([ f (x), f (y)]). Hence, since μ is non-atomic,

|h ( f (y)) − h ( f (x))| = μ([ f (x), f (y)]) = μ
(

f −1 ([ f (x), f (y)])
)

= μ([x, y]) = |h(y) − h(x)|. (14)

As for the other cases, to proceed likewise to show that (14) still holds. Hence, the claim is true.
Let T : [0, 1] → [0, 1] be defined by T (h(x)) = h ( f (x)). By the claim, T is well defined. Let t0, t1, . . . , td+1 be defined by 

t0 = 0, td+1 = 1 and ti = h(xi) for every 1 ≤ i ≤ d. By (14), we have that for every t, s ∈ (ti−1, ti), there exist x, y ∈ (xi−1, xi)

such that t = h(x), s = h(y) and
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|T (t) − T (s)| = |h ( f (x)) − h ( f (y)) | = |h(x) − h(y)| = |t − s| for every t, s ∈ (ti−1, ti).

This proves that T |(ti−1,ti) is an isometry; therefore, T is an interval exchange transformation, possibly with flips. By defini-
tion, T ◦ h = h ◦ f , thus f is topologically semiconjugate to T . �
Theorem 2.3. Let φ1, . . . , φd+1 : [0, 1] → (0, 1) be continuous maps and let � ⊂ R

d be the open set � = {(x1, . . . , xd) ∈ R
d | 0 <

x1 < · · · < xd < 1}, then for Lebesgue almost every (x1, . . . , xd) ∈ �, the piecewise continuous map f : [0, 1] → (0, 1) defined by 
f (x) = φi(x) if x ∈ Ii , where I1 = [0, x1), I2 = [x1, x2), . . . , Id = [xd−1, xd), Id+1 = [xd, 1], has no connections and hence admits an 
invariant Borel probability measure.

Proof. Denote by Id the identity map on [0, 1]. Set C0 = {Id}. Let

Ck = {φi ◦ h | 1 ≤ i ≤ d + 1,h ∈ Ck−1}, k ≥ 1.

For each 0 ≤ i ≤ d + 1, 1 ≤ j ≤ d, wi ∈ {w−
i , w+

i } and h ∈ ⋃
k≥0 Ck , the set {(x1, . . . , xd) ∈ � | x j = h(wi)} is the graph of a 

continuous function defined on [0, 1], thus it is a Lebesgue null set. This together with the fact that x0 = 0 and xd+1 = 1
do not belong to the range of any h ∈ ⋃

k≥1 Ck implies that the set of parameters (x1, . . . , xd) ∈ � for which the map f has 
connections is a Lebesgue null set, denoted by N . Let (x1, . . . , xd) ∈ � \ N , then either f has a periodic point or f has no 
periodic points and no connections. In the first case, f has an invariant Borel probability measure supported on its periodic 
orbits, while in the second case, by Theorem 2.1, f admits an invariant non-atomic Borel probability measure. �
3. Final remarks

The claim of Theorem 2.1 keeps true if in its statement the term “no connections” is replaced by the term “no closed 
connections” defined below. Let f : [0, 1] → [0, 1] be as in (1) and let f̄ : P ([0,1]) → P ([0,1]) be the map defined on 
each set A ⊂ [0, 1] by

f̄ (A) =
⋃
x∈A

{
lim
ε→0+ f (x − ε), lim

ε→0+ f (x + ε)

}
,

where limε→0+ f (−ε) := f (0) and limε→0+ f (1 + ε) := f (1). We say that the map f has a closed connection if there exist 
0 ≤ i ≤ d + 1 and k ≥ 1 such that xi ∈ ⋃

k≥1 f̄ k ({xi}).
The existence of connections neither implies nor is implied by the existence of periodic points. In fact, let f1, f2 : [0, 1] →

[0, 1] be the piecewise continuous maps defined by

f1(x) =

⎧⎪⎪⎨
⎪⎪⎩

x

2
+ 1

8
if 0 ≤ x <

1

2
x

2
+ 3

8
if

1

2
≤ x ≤ 1

, f2(x) =

⎧⎪⎪⎨
⎪⎪⎩

x

2
+ 1

4
if 0 ≤ x <

1

2
x

2
if

1

2
≤ x ≤ 1

.

The map f1 has two periodic points and no connections. The map f2 has a closed connection but no periodic points. 
Moreover, it does not admit any invariant Borel probability measure.
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